On the ACCP in skew Poincaré–Birkhoff–Witt extensions

Armando Reyes1, Yésica Suárez1
1Departamento de Matemáticas, Universidad Nacional de Colombia, Sede Bogotá, Colombia

Tóm tắt

The objective of this paper is to investigate the ascending chain condition on principal left (resp. right) ideals of noncommutative rings known as skew PBW extensions. We consider these extensions over domains and over $$\varSigma $$ -rigid rings. We unify and extend several results in the literature for Ore extensions and another families of rings which can not be expressed as iterated Ore extensions.

Tài liệu tham khảo

Anderson, D.D., Anderson, D.F., Zafrullah, M.: Factorization in integral domains. J. Pure Appl. Algebra. 69, 1–19 (1990) Curado, E.M.F., Hassouni, Y., Rego-Monteiro, M.A., Rodrigues, L.M.C.S.: Generalized Heisenberg algebra and algebraic method: the example of an infinite square-well potential. Phys. Lett. A 372(19), 3350–3355 (2008) Dumitrescu, T., Al-Salihi, S.O.I., Radu, N., Shah, T.: Some factorization properties of composite domains \(A + XB[X]\) and \(A + XB[[X]]\). Commun. Algebra 28(3), 1125–1139 (2000) Frohn, D.: A counterexample concerning ACCP in power series rings. Commun. Algebra 30, 2961–2966 (2002a) Frohn, D.: Modules with n-acc and the acc on certain types of annihilators. J. Algebra 256, 467–483 (2002b) Gallego, C., Lezama, O.: Gröbner bases for ideals of \(\sigma \)-PBW extensions. Commun. Algebra 39(1), 50–75 (2011) Grams, A.: Atomic domains and the ascending chain condition for principal ideals. Math. Proc. Camb. Philos. Soc. 75, 321–329 (1974) Heinzer, W., Lantz, D.: ACCP in polynomial rings: a counterexample. Proc. Am. Math. Soc. 121, 975–977 (1994) Hong, C.Y., Kim, N.K., Kwak, T.K.: Ore extensions of Baer and p.p.-rings. J. Pure Appl. Algebra 151, 215–226 (2000) Jonah, D.: Rings with the minimum condition for principal right ideals have the maximum condition for principal left ideals. Math. Z. 113, 106–112 (1970) Krempa, J.: Some examples of reduced rings. Algebra Colloq. 3(4), 289–300 (1996) Lezama, O., Acosta, J.P., Reyes, A.: Prime ideals of skew PBW extensions. Rev. Un. Mat. Argent. 56(2), 39–55 (2015) Lezama, O., Reyes, A.: Some homological properties of skew PBW extensions. Commun Algebra 42(3), 1200–1230 (2014) Mazurek, R., Ziembowski, M.: The ascending chain condition for principal left or right ideals of skew generalized power series rings. J. Algebra 322, 983–994 (2009) Nasr-Isfahani, A.R.: The ascending chain condition for principal left ideals of skew polynomial rings. Taiwan. J. Math. 18(3), 931–941 (2014) Niño, D., Reyes, A.: Some ring theoretical properties for skew Poincaré–Birkhoff–Witt extensions. Bol. Mat. (N. S.), to appear (2017) Renault, G.: Sur des conditions de chaines ascendantes dans des modules libres. J. Algebra 47, 268–275 (1977) Reyes A.: Ring and module theoretical properties of \(\sigma \)-PBW extensions, PhD Thesis, Universidad Nacional de Colombia, Bogotá (2013a) Reyes, A.: Gelfand-Kirillov dimension of skew PBW extensions. Rev. Colomb. Mat. 47(1), 95–111 (2013b) Reyes, A.: Uniform dimension over skew PBW extensions. Rev. Colomb. Mat. 48(1), 79–96 (2014a) Reyes, A.: Skew PBW extensions of Baer, quasi-Baer, p.p. and p.q.-rings. Rev. Integr. Temas Mat. 33(2), 173–189 (2015) Reyes, A.: \(\sigma \)-PBW extensions of skew \(\Pi \)-Armendariz rings. Far East J. Math. Sci. 103(2), 401–428 (2018) Reyes, A., Suárez, H.: A note on zip and reversible skew PBW extensions. Bol. Mat. (N.S.) 23(1), 71–79 (2016a) Reyes, A., Suárez, H.: Armendariz property for skew PBW extensions and their classical ring of quotients. Rev. Integr. Temas Mat. 34(2), 147–168 (2016b) Reyes, A., Suárez, H.: PBW bases for some 3-dimensional skew polynomial algebras. Far East J. Math. Sci. 101(6), 1207–1228 (2017a) Reyes, A., Suárez, H.: Bases for quantum algebras and skew Poincaré–Birkhoff–Witt extensions. Momento 54(1), 54–75 (2017b) Reyes, A., Suárez, H.: \(\sigma \)-PBW extensions of skew Armendariz rings. Adv. Appl. Clifford Algebr. 27(4), 3197–3224 (2017c) Reyes, A., Suárez, H.: Enveloping algebra and skew Calabi–Yau algebras over skew Poincaré–Birkhoff–Witt extensions. Far East J. Math. Sci. 102(2), 373–397 (2017d) Reyes, A., Suárez, H.: A notion of compatibility for Armendariz and Baer properties over skew PBW extensions. Rev. Un. Mat. Argent. 59(1), 157–178 (2018) Suárez, H., Reyes, A.: A generalized Koszul property for skew PBW extensions. Far East J. Math. Sci. 101(2), 301–320 (2017e)