VQA: Visual Question Answering
Tóm tắt
We propose the task of free-form and open-ended Visual Question Answering (VQA). Given an image and a natural language question about the image, the task is to provide an accurate natural language answer. Mirroring real-world scenarios, such as helping the visually impaired, both the questions and answers are open-ended. Visual questions selectively target different areas of an image, including background details and underlying context. As a result, a system that succeeds at VQA typically needs a more detailed understanding of the image and complex reasoning than a system producing generic image captions. Moreover, VQA is amenable to automatic evaluation, since many open-ended answers contain only a few words or a closed set of answers that can be provided in a multiple-choice format. We provide a dataset containing
$$\sim $$
0.25 M images,
$$\sim $$
0.76 M questions, and
$$\sim $$
10 M answers (
www.visualqa.org
), and discuss the information it provides. Numerous baselines and methods for VQA are provided and compared with human performance. Our VQA demo is available on CloudCV (
http://cloudcv.org/vqa
).
Tài liệu tham khảo
Agrawal, H., Mathialagan, C.S., Goyal, Y., Chavali, N., Banik, P., Mohapatra, A., et al. (2015). Cloudcv: Large-scale distributed computer vision as a cloud service. In G. Hua & X.-S. Hua (Eds.), Mobile cloud visual media computing (pp. 265–290). Switzerland: Springer International Publishing.
Antol, S., Zitnick, C.L., Parikh, D. (2014). Zero-Shot learning via visual abstraction. In ECCV
Bigham, J.P., Jayant, C., Ji, H., Little, G., Miller, A., Miller, R.C., Miller, R., Tatarowicz, A., White, B., White, S., Yeh, T. (2010). VizWiz: Nearly real-time answers to visual questions. In User interface software and technology
Bollacker, K., Evans, C., Paritosh, P., Sturge, T., & Taylor, J. (2008). Freebase: A collaboratively created graph database for structuring human knowledge. In International conference on management of data. doi:10.1145/1376616.1376746.
Carlson, A., Betteridge, J., Kisiel, B., Settles, B., Jr., E.R.H., Mitchell, T.M. (2010). Toward an architecture for never-ending language learning. In AAAI
Chen, X., Fang, H., Lin, T., Vedantam, R., Gupta, S., Dollár, P., Zitnick, C.L. (2015). Microsoft COCO captions: Data collection and evaluation server. CoRR arXiv:1504.00325
Chen, X., Fang, H., Lin, T.Y., Vedantam, R., Gupta, S., Dollár, P., Zitnick, C.L. (2015). Microsoft COCO Captions: Data collection and evaluation server. arXiv:1504.00325
Chen, X., Shrivastava, A., Gupta, A. (2013). NEIL: Extracting visual knowledge from web data. In ICCV
Chen, X., Zitnick, C.L. (2015). Mind’s eye: A recurrent visual representation for image caption generation. In CVPR
Coppersmith, G., Kelly, E. (2014). Dynamic wordclouds and vennclouds for exploratory data analysis. In ACL workshop on interactive language learning and visualization
Deng, J., Berg, A.C., Fei-Fei, L. (2011). Hierarchical semantic indexing for large scale image retrieval. In CVPR
Donahue, J., Hendricks, L.A., Guadarrama, S., Rohrbach, M., Venugopalan, S., Saenko, K., Darrell, T. (2015). Long-term recurrent convolutional networks for visual recognition and description. In CVPR
Elliott, D., Keller, F. (2014). Comparing automatic evaluation measures for image description. In ACL
Fader, A., Zettlemoyer, L., Etzioni, O. (2013). Paraphrase-driven learning for open question answering. In ACL. http://www.aclweb.org/anthology/P13-1158
Fader, A., Zettlemoyer, L., Etzioni, O. (2014). Open Question answering over curated and extracted knowledge bases. In International conference on knowledge discovery and data mining
Fang, H., Gupta, S., Iandola, F.N., Srivastava, R., Deng, L., Dollár, P., Gao, J., He, X., Mitchell, M., Platt, J.C., Zitnick, C.L., Zweig, G. (2015). From captions to visual concepts and back. In CVPR
Farhadi, A., Hejrati, M., Sadeghi, A., Young, P., Rashtchian, C., Hockenmaier, J., Forsyth, D. (2010). Every picture tells a story: Generating sentences for images. In ECCV
Gao, H., Mao, J., Zhou, J., Huang, Z., Yuille, A. (2015). Are you talking to a machine? dataset and methods for multilingual image question answering. In NIPS
Geman, D., Geman, S., Hallonquist, N., Younes, L. (2014). A visual turing test for computer vision systems. In PNAS
Gordon, J., Durme, B.V. (2013). Reporting bias and knowledge extraction. In Proceedings of the 3rd Workshop on Knowledge Extraction, at CIKM 2013
Guadarrama, S., Krishnamoorthy, N., Malkarnenkar, G., Venugopalan, S., Mooney, R., Darrell, T., Saenko, K. (2013). YouTube2Text: Recognizing and describing arbitrary activities using semantic hierarchies and zero-shot recognition. In ICCV. http://www.eecs.berkeley.edu/~sguada/pdfs/2013-ICCV-youtube2text-final.pdf
Hodosh, M., Young, P., & Hockenmaier, J. (2013). Framing image description as a ranking task: Data models and evaluation metrics. ournal of Artificial Intelligence Research, 47, 853–899.
Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., Guadarrama, S., Darrell, T. (2014). Caffe: Convolutional architecture for fast feature embedding. arXiv:1408.5093
Karpathy, A., Fei-Fei, L. (2015). Deep visual-semantic alignments for generating image descriptions. In CVPR . http://arxiv.org/abs/1412.2306
Kazemzadeh, S., Ordonez, V., Matten, M., Berg, T.L. (2014). ReferItGame: Referring to objects in photographs of natural scenes. In EMNLP
Kiros, R., Salakhutdinov, R., Zemel, R.S. (2015). Unifying visual-semantic embeddings with multimodal neural language models. In TACL
Kiros, R., Zhu, Y., Salakhutdinov, R., Zemel, R.S., Torralba, A., Urtasun, R., Fidler, S. (2015). Skip-thought vectors. arXiv:1506.06726
Kong, C., Lin, D., Bansal, M., Urtasun, R., & Fidler, S. (2014). What Are You Talking About?. In CVPR: Text-to-image coreference.
Krizhevsky, A., Sutskever, I., Hinton, G.E. (2012). ImageNet classification with deep convolutional neural networks. In NIPS
Kulkarni, G., Premraj, V., Sagnik Dhar and, S.L., Choi, Y., Berg, A.C., Berg, T.L. (2011). Baby talk: Understanding and generating simple image descriptions. In CVPR
Lenat, D. B., & Guha, R. V. (1989). Building large knowledge-based systems; representation and inference in the cyc project. Chicago: Addison-Wesley Longman Publishing Co., Inc.
Lin, T.Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P., Zitnick, C.L. (2014). Microsoft COCO: Common objects in context. In ECCV
Lin, X., Parikh, D. (2015). Don’t just listen, use your imagination: Leveraging visual common sense for non-visual tasks. In CVPR
Liu, H., & Singh, P. (2014). ConceptNet-A Practical Commonsense Reasoning Tool-Kit. BT Technology Journal, 22(4), 211–226. doi:10.1023/B:BTTJ.0000047600.45421.6d.
Malinowski, M., Fritz, M. (2014). A multi-world approach to question answering about real-world scenes based on uncertain input. In NIPS
Malinowski, M., Rohrbach, M., Fritz, M. (2015). Ask your neurons: A neural-based approach to answering questions about images. In ICCV
Mao, J., Xu, W., Yang, Y., Wang, J., Yuille, A.L. (2014). Explain images with multimodal recurrent neural networks. CoRR arXiv:1410.1090
Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J. (2013). Distributed representations of words and phrases and their compositionality. In NIPS
Mitchell, M., van Deemter, K., Reiter, E. (2013). Attributes in visual reference. In PRE-CogSci
Mitchell, M., Dodge, J., Goyal, A., Yamaguchi, K., Stratos, K., Han, X., Mensch, A., Berg, A., Berg, T.L., Daume III, H. (2012). Midge: Generating image descriptions from computer vision detections. In ACL
Mitchell, M., Van Deemter, K., Reiter, E. (2013). Generating expressions that refer to visible objects. In HLT-NAACL
Ramanathan, V., Joulin, A., Liang, P., Fei-Fei, L. (2014). Linking People with “Their” names using coreference resolution. In ECCV
Ren, M., Kiros, R., Zemel, R. (2015). Exploring models and data for image question answering. In NIPS
Richardson, M., Burges, C.J., Renshaw, E. (2013). MCTest: A challenge dataset for the open-domain machine comprehension of text. In EMNLP
Rohrbach, M., Qiu, W., Titov, I., Thater, S., Pinkal, M., Schiele, B. (2013). Translating video content to natural language descriptions. In ICCV
Sadeghi, F., Kumar Divvala, S.K., Farhadi, A. (2015). Viske: Visual knowledge extraction and question answering by visual verification of relation phrases. In CVPR
Simonyan, K., Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. CoRR arxiv:1409.1556
Toutanova, K., Klein, D., Manning, C.D., Singer, Y. (2003). Feature-rich part-of-speech tagging with a cyclic dependency network. In ACL
Tu, K., Meng, M., Lee, M. W., Choe, T. E., & Zhu, S. C. (2014). Joint video and text parsing for understanding events and answering queries. IEEE MultiMedia, 21(2), 42–70. doi:10.1109/MMUL.2014.29.
Vedantam, R., Zitnick, C.L., Parikh, D.(2015). CIDEr: Consensus-based image description evaluation. In CVPR
Vendantam, R., Lin, X., Batra, T., Zitnick, C.L., Parikh, D. (2015). Learning common sense through visual abstraction. In ICCV
Vinyals, O., Toshev, A., Bengio, S., Erhan, D. (2015). Show and tell: A neural image caption generator. In CVPR. arXiv:1411.4555
Weston, J., Bordes, A., Chopra, S., Mikolov, T. (2015). Towards AI-complete question answering: A set of prerequisite toy tasks. CoRR arXiv:1502.05698
Yu, L., Park, E., Berg, A.C., Berg, T.L. (2015). Visual madlibs: Fill-in-the-blank description generation and question answering. In ICCV
Zhang, P., Goyal, Y., Summers-Stay, D., Batra, D., Parikh, D. (2015). Yin and yang: Balancing and answering binary visual questions. CoRR arXiv:1511.05099
Zitnick, C.L., Parikh, D. (2013). Bringing semantics into focus using visual abstraction. In CVPR
Zitnick, C.L., Parikh, D., Vanderwende, L. (2013). Learning the visual interpretation of sentences. In ICCV
Zitnick, C. L., Vedantam, R., & Parikh, D. (2015). Adopting abstract images for semantic scene understanding. IEEE transactions on pattern analysis and machine intelligence, 38, 627–638.