Improving bending strength of LTCC materials with low dielectric loss by structural design

Journal of Electroceramics - Tập 49 - Trang 109-114 - 2022
Huaizhi Wang1, Yue Leng1, Yaoyi Chen1, Haiyi Peng2, Haishen Ren2, Tianyi Xie2, Huixing Lin2, Fancheng Meng1
1School of Material Science & Engineering, Chongqing University of Technology, Chongqing, China
2Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, China

Tóm tắt

The flake alumina filler is added to improve the bending strength in BaZrO3 (BZ)/BaO-MgO-ZnO-SiO2-B2O3 (BBSMZ) glass for the application of low temperature co-fired ceramics. The effects of flake alumina filler for BaZrO3/BaO-MgO-ZnO-SiO2-B2O3 on phase, microstructure, dielectric and mechanical property are studied. With the increase of flake Al2O3 content, flake Al2O3 phase appears, BaZrO3, BaZr(BO3)2, BaZn2Si2O7 phase decreases, dielectric constant decreases and dielectric loss increases. By adding flake Al2O3, the mechanical strength of the material increases. Under the same sintering conditions, the bending strength (205 MPa) of the laminated sample increased by nearly 60% compared with the same content flake alumina block sample (124 MPa), and increased by 162% compared with the sample without flake alumina (78 MPa). BZ-BBSMZ-5 wt% flake Al2O3 ceramic sintered satisfactorily at 940 °C with tanδ = 4.82*10–4 (10 GHz), εr = 11.66. The bending strength of the sample is 205 Mpa.

Tài liệu tham khảo

N. Mori, Y. Sugimoto, J. Harada, Y. Higuchi, Dielectric properties of new glass-ceramics for LTCC applied to microwave or millimeter-wave frequencies. J. Eur. Ceram. Soc. 26(10–11), 1925–1928 (2006). https://doi.org/10.1016/j.jeurceramsoc.2005.09.023 T.S. Sasikala, M.N. Suma, P. Mohanan, C. Pavithran, M.T. Sebastian, Forsterite-based ceramic–glass composite for substrate applications in microwave and millimeter wave communications. J. Alloy. Compd. 461(1–2), 555–559 (2008). https://doi.org/10.1016/j.jallcom.2007.07.084 Y. Imanaka, Multilayered low temperature cofired ceramics (LTCC) technology (Springer, US, 2005) H. Jantunen, R. Rautioaho, A. Uusimäki et al., Compositions of MgTiO3-CaTiO3 ceramic with two borosilicate glasses for LTCC technology. J. Eur. Ceram. Soc. 20(14–15), 2331–2336 (2000). https://doi.org/10.1016/S0955-2219(00)00145-X I.J. Induja, M.R. Varma, M.T. Sebastian, Preparation, Characterization and properties of alumina-lithium aluminium borosilicate glass based LTCC tapes. J. Mater. Sci. Mater. Electron. 28(19), 14655–14663 (2017). https://doi.org/10.1007/s10854-017-7330-7 C. Chiang, S.F. Wang, Y.R. Wang, W.C.J. Wei, Densification and microwave dielectric properties of CaO–B2O3–SiO2 system glass–ceramics. Ceram. Int. (2008). https://doi.org/10.1016/j.ceramint.2006.12.008 J. Liu, M. Nie, Effects of BaCu(B2O5) additives on microstructure and dielectric properties of CaO-B2O3-SiO2 materials prepared by solid state reaction technique. Electron. Compon. Mater. (2017) O. Dernovsek, M. Eberstein, W.A. Schiller et al., LTCC glass-ceramic composites for microwave application. J. Eur. Ceram. Soc. 21(10–11), 1693–1697 (2001). https://doi.org/10.1016/S0955-2219(01)00096-6 J. Yang, Y.G. Du, W.J. Zhang, Study of the properties of the LTCC Ca-Al-Si glass-ceramic. J. Funct. Mater. (2005). https://doi.org/10.3321/j.issn:1001-9731.2005.11.022 C.L. Chen, A. Roosen, La2O3/Al2O3/B2O3 Based Glass-Ceramics for LTCC Application. Key. Eng. Mater. (2005). https://doi.org/10.4028/www.scientific.net/KEM.280-283.929 T. Lei, H. Li, N. Wei et al., High-temperature colossal dielectric behavior of BaZrO3 ceramics. RSC. Adv. 7, 33708–33713 (2017). https://doi.org/10.1039/C7RA06401B B. Zhao, C. Zhong, S. Zhang et al., Influence of two-step sintering method on the properties of BaZrO3/CaO-B2O3-SiO2 composite material. Electron. Compon. Mater. (2009). https://doi.org/10.1016/j.apm.2007.10.019 F. Wang, Y.H. Lou, Z.J. Li et al., Improved bending strength and dielectric loss in Al2O3-based LTCC with La2O3-CaO-B2O3-SiO2 glass. Ceram. Int. 47(7), 9955–9960 (2020). https://doi.org/10.1016/j.ceramint.2020.12.140 X. Luo, L. Ren, W. Xie et al., Microstructure, sintering and properties of CaO–Al2O3–B2O3–SiO2 glass/Al2O3 composites with different CaO contents. J. Mater. Sci. Mater. Electron. 27(5), 5446–5451 (2016). https://doi.org/10.1007/s10854-016-4448-y Z. Qing, L. Bo, L. Hao et al., Fabrication and properties of Li2O–Al2O3–SiO2 glass/Al2O3 composites for low temperature co-fired ceramic applications. J. Mater. Sci. Mater. Electron. 26(3), 1789–1794 (2015). https://doi.org/10.1007/s10854-014-2611-x M. Liu, H. Zhou, H. Zhu et al., Low Temperature Sintering and Dielectric Properties of Ca-Ba-Al-B-Si-O;Glass/Al2O3 Composites for LTCC Applications. J. Wuhan. Univ. Technol. Mater. Sci. Ed. 28(6), 1085–1090 (2013). https://doi.org/10.1007/s11595-013-0824-0 Q. Xia, C.W. Zhong, J. Luo, Low temperature sintering and characteristics of K2O–B2O3–SiO2–Al2O3 glass/ceramic composites for LTCC applications. J. Mater. Sci. Mater. Electron. 25(10), 4187–4192 (2014). https://doi.org/10.1007/s10854-014-2147-0 M.H. Lim, J.H. Park, H.G. Kim, Fabrication and characterization of glass-ceramic + Al2O3 composition for ltcc (Low Temperature Co-Fired Ceramic), in International Conference on Properties & Applications of Dielectric Materials. (IEEE, 2003) H. Kwak, H.D. Jeon, H. Kim et al., Fabrication of LTCC Multi-layer Circuit Board made of Glass-Al2O3 Composites. J. Korean. Inst. Electr. Electron. Mater. Eng. 21(6), 509–516 (2008). https://doi.org/10.4313/JKEM.2008.21.6.509 P.S. Fisher, J.E. Elsner, D.A. Marshall, Method of connecting internal silver traces to external gold to produce a gold external side metal for an LTCC package (US20060125074 A1[P], US, 2006)