Apple detection in nighttime tree images using the geometry of light patches around highlights
Tài liệu tham khảo
Annamalai, P., Lee, W.S., 2003. Citrus yield mapping system using machine vision. ASAE Paper 03-1002.
Bansal, 2013, Green citrus detection using fast Fourier transform (FFT) leakage, Precision Agric., 14, 59, 10.1007/s11119-012-9292-3
Barnea, E., Ben-Shahar, O., 2014. Depth based fruit detection from viewer-based pose. In: Proceedings of the AgEng’14 Conference (Zurich, Switzerland). Paper 0137.
Blanc-Talon, 2009, Highlight removal from single image, Adv. Concepts Intell. Vis. Syst., 5807, 176, 10.1007/978-3-642-04697-1_17
Bulanon, 2008, Study on temporal variation in citrus canopy using thermal imaging for citrus fruit detection, Biosyst. Eng., 101, 161, 10.1016/j.biosystemseng.2008.08.002
Cohen, O., Linker, R., Payne, A., Walsh, K., 2014. Detection of fruit in canopy night-time images: Two case studies with apple and mango. In: Proceedings of the 2014 Precision Agriculture Conference. Paper 1420.
Font, 2014, Counting red grapes in vineyards by detecting specular spherical reflection peaks in RGB images obtained at night with artificial illumination, Comput. Electron. Agric., 108, 105, 10.1016/j.compag.2014.07.006
Jiménez, 1999, Automatic fruit recognition: a survey and new results using range-attenuation images, Pattern Recogn., 32, 1719, 10.1016/S0031-3203(98)00170-8
Jiménez, 2000, A survey of computer vision methods for locating fruit on trees, Trans. ASAE, 43, 1911, 10.13031/2013.3096
Jiménez, 2000, A vision system based on a laser range-finder applied to robotic fruit harvesting, Mach. Vis. Appl., 11, 321, 10.1007/s001380050117
Kapach, 2012, Computer vision for fruit harvesting robots – state of the art and challenges ahead, Int. J. Comput. Vis. Robot., 3, 4, 10.1504/IJCVR.2012.046419
Kelman, 2014, Vision-based localization of mature apples in trees using convexity, Biosyst. Eng., 118, 174, 10.1016/j.biosystemseng.2013.11.007
Kurtulmus, 2011, Green citrus detection using ‘eigenfruit’, color and circular Gabor texture features under natural outdoor conditions, Comput. Electron. Agric., 78, 140, 10.1016/j.compag.2011.07.001
Linker, 2012, Determination of the number of green apples in RGB images recorded in orchards, Comput. Electron. Agric., 81, 45, 10.1016/j.compag.2011.11.007
Mairon, R., Ben Shahar, O., 2014. Highlight detection with application to sweet pepper localization. In: Proceedings of the AgEng’14 Conference (Zurich, Switzerland). Paper 0168.
Payne, 2013, Estimation of mango crop yield using image analysis–segmentation method, Comput. Electron. Agric., 91, 57, 10.1016/j.compag.2012.11.009
Payne, 2014, Estimating mango crop yield using image analysis using fruit at ‘stone hardening’ stage and night time imaging, Comput. Electron. Agric., 100, 160, 10.1016/j.compag.2013.11.011
Rakun, 2011, Detecting fruits in natural scenes by using spatial-frequency based texture analysis and multiview geometry, Comput. Electron. Agric., 76, 80, 10.1016/j.compag.2011.01.007
Safren, 2007, Detection of green apples in hyperspectral images of apple-tree foliage using machine vision, Trans. ASABE, 50, 2303, 10.13031/2013.24083
Sites, A., Delwiche, M.J., 1988. Computer vision to locate fruit on a tree. ASAE Paper No. 85-3039.
Stajnko, 2004, Estimation of number and diameter of apple fruits in an orchard during the growing season by thermal imaging, Comput. Electron. Agric., 42, 31, 10.1016/S0168-1699(03)00086-3
Tan, P., Lin, S., Quan, L., 2006. Separation of highlight reflections on textured surfaces. In: Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06).
Wachs, 2010, Low and high-level visual feature-based apple detection from multi-modal images, Precision Agric., 11, 717, 10.1007/s11119-010-9198-x
Zhou, 2012, Using colour features of cv. ‘Gala’ apple fruits in an orchard in image processing to predict yield, Precision Agric., 13, 568, 10.1007/s11119-012-9269-2