Effect of thermal softening in shearing of strain-rate dependent materials

Archive for Rational Mechanics and Analysis - Tập 99 - Trang 349-374 - 1987
A. E. Tzavaras1
1Department of Mathematics, Purdue University, West Lafayette

Tài liệu tham khảo

N. Charalambakis, Adiabatic shearing flow caused by time dependent inertial force, Quart. Appl. Math. (3) 42 (1984), 275–280. N. Charalambakis, Adiabatic shearing of an incompressible fluid under periodic or steady boundary conditions, J. Thermal Stresses 8 (1985), 425–434 N. Charalambakis & E. N. Houstis, Adiabatic shearing of one-dimensional thermoviscoelastic flows caused by boundary and inertial forces, Eng. Anal. 2 (1985), 205–210. R. J. Clifton, J. Duffy, K. A. Hartley, & T. G. Shawki, On critical conditions for shear band formation at high strain rates, Scripta Met. 18 (1984), 443–448. C. M. Dafermos, Global smooth solutions to the initial boundary value problem of one-dimensional nonlinear thermoviscoelasticity, SIAM J. Math. Analysis 13 (1982), 397–408. C. M. Dafermos & L. Hsiao, Global smooth thermomechanical processes in one-dimensional nonlinear thermoviscoelasticity, J. Nonlinear Analysis 6 (1982), 435–454. C. M. Dafermos & L. Hsiao, Adiabatic shearing of incompressible fluids with temperature dependent viscosity, Quart. Appl. Math. (1) 41 (1983), 45–58. C. M. Dafermos, Contemporary Issues in the Dynamic Behavior of Continuous Media, LCDS Lecture Notes # 85-1, 1985. D. A. Drew & J. E. Flaherty, Adaptive finite element methods and the numerical solution of shear band problems, in “Phase Transformations and Material Instabilities in Solids”, M. E. Gurtin, ed., Academic Press, New York, 1984. A. Friedman, Partial Differential Equations of Parabolic Type, Prentice Hall, Englewood Cliffs, New Jersey, 1964. O. A. Ladyženskaja, Y. A. Solonnikov & N. N. Ural'ceva, Linear and Quasilinear Equations of Parabolic Type. (Translated from the Russian by S. smith), American Math. Society, Providence, RI, 1968. J. Leray & J. Schauder, Topologie et équations fonctionelles, Ann. Sci. École Norm. Sup. 51 (1934), 45–78. M. H. Protter & H. F. Weinberger, Maximum Principles in Differential Equations, Prentice Hall, Englewood Cliffs, NJ, 1967. T. G. Shawki, Ph. D. Thesis, Brown University, 1985. A. E. Tzavaras, Shearing of materials exhibiting thermal softening or temperature dependent viscosity, Quart. Appl. Math. (1) 44 (1986), 1–12. A. E. Tzavaras, Plastic shearing of materials exhibiting strain hardening or strain softening, Arch. Rational Mech. and Anal. 94 (1986), 39–58.