Heteroatom-doped nanomaterials/core–shell nanostructure based electrocatalysts for the oxygen reduction reaction

Journal of Materials Chemistry A - Tập 10 Số 3 - Trang 987-1021
Saravanan Nagappan1, Malarkodi Duraivel2, Shamim Ahmed Hira1, Kandasamy Prabakar2, Chang‐Sik Ha3, Sang Hoon Joo4, Ki Min Nam1, Kang Hyun Park1
1Department of Chemistry, Chemistry Institute for Functional Materials, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-Gu, Busan 46241, Republic of Korea
2Department of Electrical Engineering, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-Gu, Busan 46241, Republic of Korea
3Department of Polymer Science and Engineering, Pusan National University, 2, Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea
4School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919, Republic of Korea

Tóm tắt

This review describes the heteroatom-doped core–shell nanostructures (HCSNs) for the oxygen reduction reaction (ORR). We also cover di-, tri-, and multi-doped HCSNs for the ORR and reactive descriptors used for enhancing the ORR activity.

Từ khóa


Tài liệu tham khảo

Goel, 2021, Nano Energy, 80, 105552, 10.1016/j.nanoen.2020.105552

Lu, 2021, Nano Lett., 21, 1555, 10.1021/acs.nanolett.0c04898

Qu, 2018, J. Mater. Chem. A, 6, 21827, 10.1039/C8TA05245J

Wu, 2021, Adv. Mater., 2008376, 10.1002/adma.202008376

Li, 2019, Electrochem. Energy Rev., 2, 518, 10.1007/s41918-019-00052-4

Tian, 2020, Joule, 4, 45, 10.1016/j.joule.2019.12.014

Liu, 2019, Adv. Mater., 31, 1802234, 10.1002/adma.201802234

Ma, 2020, Angew. Chem., Int. Ed., 59, 18334, 10.1002/anie.202003654

Wang, 2020, ACS Appl. Mater. Interfaces, 12, 30381, 10.1021/acsami.0c06951

Wu, 2020, Adv. Funct. Mater., 30, 1910274, 10.1002/adfm.201910274

Li, 2018, Nano Today, 21, 91, 10.1016/j.nantod.2018.06.005

Sharma, 2018, Chem. Mater., 30, 2, 10.1021/acs.chemmater.7b03422

Singh, 2019, ACS Catal., 9, 8622, 10.1021/acscatal.9b01420

Shah, 2020, Appl. Catal., B, 268, 118570, 10.1016/j.apcatb.2019.118570

Yan, 2018, Chem. Soc. Rev., 47, 7628, 10.1039/C7CS00690J

Huang, 2020, Adv. Energy Mater., 10, 1900375, 10.1002/aenm.201900375

Yang, 2018, Adv. Funct. Mater., 28, 1704537, 10.1002/adfm.201704537

Ren, 2018, Adv. Sci., 5, 1700515, 10.1002/advs.201700515

Jiang, 2018, Energy Storage Mater., 12, 260, 10.1016/j.ensm.2017.11.005

Strasser, 2016, Nano Energy, 29, 166, 10.1016/j.nanoen.2016.04.047

Lu, 2019, Chem. Eng. J., 355, 208, 10.1016/j.cej.2018.08.132

Strasser, 2016, Acc. Chem. Res., 49, 2658, 10.1021/acs.accounts.6b00346

Tsai, 2015, ACS Catal., 3, 1568, 10.1021/cs501020a

Kulkarni, 2018, Chem. Rev., 118, 2302, 10.1021/acs.chemrev.7b00488

Zhou, 2016, Chem. Soc. Rev., 45, 1273, 10.1039/C5CS00414D

Al-Zoubi, 2020, J. Am. Chem. Soc., 142, 5477, 10.1021/jacs.9b11061

Yin, 2020, Nanoscale, 12, 15944, 10.1039/D0NR03719B

Jung, 2016, Appl. Catal., B, 196, 199, 10.1016/j.apcatb.2016.05.028

Tian, 2017, ACS Catal., 7, 3810, 10.1021/acscatal.7b00366

Chaudhuri, 2012, Chem. Rev., 112, 2373, 10.1021/cr100449n

Kumar, 2020, J. Mater. Chem. B, 8, 8992, 10.1039/D0TB01559H

Feng, 2018, J. Mater. Chem. A, 6, 7310, 10.1039/C8TA01257A

Shao, 2019, J. Mater. Chem. A, 7, 20478, 10.1039/C9TA07016H

Li, 2017, J. Phys. Chem. C, 121, 14434, 10.1021/acs.jpcc.7b03093

Sarapuu, 2018, J. Mater. Chem. A, 6, 776, 10.1039/C7TA08690C

Choi, 2013, Chem.–Eur. J., 19, 8190, 10.1002/chem.201203834

Li, 2021, Chin. J. Catal., 42, 2173, 10.1016/S1872-2067(21)63901-3

Takahashi, 2019, J. Electroanal. Chem., 842, 1, 10.1016/j.jelechem.2019.04.053

Jang, 2013, Sci. Rep., 3, 2872, 10.1038/srep02872

Jauhar, 2018, Adv. Mater. Interfaces, 5, 1701508, 10.1002/admi.201701508

Guo, 2017, Appl. Surf. Sci., 416, 118, 10.1016/j.apsusc.2017.04.135

Thanh, 2018, ACS Appl. Mater. Interfaces, 10, 4672, 10.1021/acsami.7b16294

Niu, 2019, Nano-Micro Lett., 11, 8, 10.1007/s40820-019-0238-4

Morozan, 2011, Energy Environ. Sci., 4, 1238, 10.1039/c0ee00601g

Sui, 2017, J. Mater. Chem. A, 5, 1808, 10.1039/C6TA08580F

Kim, 2018, Sci. Adv., 4, aap9360, 10.1126/sciadv.aap9360

Ghosh, 2018, Nanoscale, 10, 11241, 10.1039/C8NR01032C

Siahrostami, 2020, ACS Catal., 10, 7495, 10.1021/acscatal.0c01641

Wang, 2019, Chem, 5, 1486, 10.1016/j.chempr.2019.03.002

Ma, 2019, npj Comput. Mater., 5, 78, 10.1038/s41524-019-0210-3

Zhang, 2015, ACS Catal., 5, 7244, 10.1021/acscatal.5b01563

Woo, 2021, Chem. Commun., 57, 7350, 10.1039/D1CC02667D

Singh, 2017, J. Mater. Chem. A, 5, 20095, 10.1039/C7TA05222G

Xia, 2019, Science, 366, 226, 10.1126/science.aay1844

Zhang, 2020, Trends Chem., 2, 942, 10.1016/j.trechm.2020.07.007

Xia, 2021, Nat. Commun., 12, 4225, 10.1038/s41467-021-24329-9

Yan, 2018, Chem. Soc. Rev., 47, 7628, 10.1039/C7CS00690J

Zhang, 2021, Adv. Mater., 33, 2006494, 10.1002/adma.202006494

Gewirth, 2018, Chem. Rev., 118, 2313, 10.1021/acs.chemrev.7b00335

Kim, 2020, J. Mater. Chem. A, 8, 8195, 10.1039/D0TA01809K

Kim, 2020, Nano Lett., 20, 7413, 10.1021/acs.nanolett.0c02812

Peng, 2018, Green Energy Environ., 3, 335, 10.1016/j.gee.2018.07.006

Das, 2020, Chem. Soc. Rev., 49, 2937, 10.1039/C9CS00713J

Chakthranont, 2017, Adv. Energy Mater., 7, 1701515, 10.1002/aenm.201701515

Zhang, 2021, Adv. Funct. Mater., 31, 2100438, 10.1002/adfm.202100438

Jackson, 2018, Nanomaterials, 8, 38, 10.3390/nano8010038

Takimoto, 2017, J. Catal., 345, 207, 10.1016/j.jcat.2016.11.026

Zhang, 2005, J. Am. Chem. Soc., 127, 12480, 10.1021/ja053695i

Koenigsmann, 2011, J. Am. Chem. Soc., 133, 9783, 10.1021/ja111130t

Strickler, 2017, ACS Energy Lett., 2, 244, 10.1021/acsenergylett.6b00585

Velázquez-Palenzuela, 2015, J. Catal., 328, 297, 10.1016/j.jcat.2014.12.012

Gong, 2010, J. Am. Chem. Soc., 132, 14364, 10.1021/ja1063873

Xiong, 2018, J. Am. Chem. Soc., 140, 7248, 10.1021/jacs.8b03365

Xiong, 2018, Chem. Mater., 30, 1532, 10.1021/acs.chemmater.7b04201

Xia, 2013, J. Mater. Chem. A, 1, 14443, 10.1039/c3ta13139d

Dai, 2019, Nat. Commun., 10, 440, 10.1038/s41467-019-08323-w

Jung, 2017, ACS Appl. Mater. Interfaces, 9, 31806, 10.1021/acsami.7b07648

Mezzavilla, 2016, ACS Catal., 6, 8058, 10.1021/acscatal.6b02221

Oh, 2015, ACS Nano, 3, 2856, 10.1021/nn5068539

Chen, 2018, Nano Energy, 54, 280, 10.1016/j.nanoen.2018.10.034

Godínez-Salomón, 2017, Electrochim. Acta, 247, 958, 10.1016/j.electacta.2017.06.073

Park, 2018, Appl. Catal., B, 225, 84, 10.1016/j.apcatb.2017.11.052

Li, 2016, Electrochim. Acta, 192, 227, 10.1016/j.electacta.2016.01.147

An, 2015, ACS Catal., 5, 6328, 10.1021/acscatal.5b01656

An, 2013, J. Phys. Chem. C, 117, 16144, 10.1021/jp4057785

Kang, 2014, Nano Lett., 14, 6361, 10.1021/nl5028205

Chen, 2015, Sci. Rep., 5, 11949, 10.1038/srep11949

Park, 2019, Ultrason. Sonochem., 58, 104673, 10.1016/j.ultsonch.2019.104673

Zhang, 2019, Catal. Sci. Technol., 9, 4668, 10.1039/C9CY01056D

Strickler, 2017, Nano Lett., 17, 6040, 10.1021/acs.nanolett.7b02357

Qin, 2018, ACS Catal., 8, 5581, 10.1021/acscatal.7b04406

Wang, 2018, J. Mater. Chem. A, 6, 8662, 10.1039/C8TA01698D

Singh, 2019, Adv. Mater., 31, 1804297, 10.1002/adma.201804297

Li, 2017, Small, 13, 1702002, 10.1002/smll.201702002

Zhang, 2021, Chem. Soc. Rev., 50, 9817, 10.1039/D1CS00330E

Yoo, 2012, Energy Environ. Sci., 5, 6928, 10.1039/c2ee02830a

Liu, 2013, J. Mater. Chem. A, 1, 14706, 10.1039/c3ta13243a

Kim, 2015, Phys. Chem. Chem. Phys., 17, 407, 10.1039/C4CP03868A

Zhong, 2014, J. Power Sources, 272, 344, 10.1016/j.jpowsour.2014.08.114

Yuan, 2020, Small, 16, 2000742, 10.1002/smll.202000742

Guo, 2016, Science, 351, 361, 10.1126/science.aad0832

Lee, 2016, ACS Catal., 6, 5095, 10.1021/acscatal.5b02721

He, 2016, Adv. Funct. Mater., 26, 8255, 10.1002/adfm.201603693

Yang, 2018, Sci. Rep., 8, 4200, 10.1038/s41598-018-22507-2

Yang, 2019, Carbon, 147, 83, 10.1016/j.carbon.2019.02.061

Zhang, 2021, Nano-Micro Lett., 13, 65, 10.1007/s40820-020-00579-y

Xiao, 2020, Appl. Catal., B, 265, 118603, 10.1016/j.apcatb.2020.118603

Niu, 2017, Carbon, 114, 250, 10.1016/j.carbon.2016.12.016

Hu, 2017, Adv. Mater., 29, 1604942, 10.1002/adma.201604942

Wang, 2016, Front. Chem., 4, 36, 10.3389/fchem.2016.00036

Ren, 2016, ACS Appl. Mater. Interfaces, 8, 4118, 10.1021/acsami.5b11786

Yang, 2015, J. Am. Chem. Soc., 137, 1436, 10.1021/ja5129132

Yang, 2013, J. Phys. Chem. C, 117, 1748, 10.1021/jp309990e

Wang, 2009, J. Am. Chem. Soc., 131, 17299

Zhou, 2019, Chem. Commun., 55, 525, 10.1039/C8CC09140D

Guan, 2021, Angew. Chem., Int. Ed., 60, 21899, 10.1002/anie.202107437

Feng, 2020, Adv. Sci., 7, 1800178, 10.1002/advs.201800178

Jiang, 2017, J. Mater. Chem. A, 5, 9233, 10.1039/C7TA01754E

Xiao, 2017, Langmuir, 33, 6038, 10.1021/acs.langmuir.7b00331

Li, 2018, J. Mater. Res., 33, 4173, 10.1557/jmr.2018.411

Zhou, 2019, New J. Chem., 43, 5632, 10.1039/C8NJ05193C

Dong, 2020, Mater. Today Commun., 24, 101127, 10.1016/j.mtcomm.2020.101127

Sa, 2018, Top. Catal., 61, 1077, 10.1007/s11244-018-0935-0

Yang, 2018, J. Mater. Chem. A, 6, 7762, 10.1039/C8TA01078A

Xu, 2020, Adv. Funct. Mater., 30, 1906081, 10.1002/adfm.201906081

Lv, 2018, Nat. Commun., 9, 3376, 10.1038/s41467-018-05878-y

Naumov, 2018, Nanoscale, 10, 6724, 10.1039/C7NR08545A

Wang, 2015, Int. J. Hydrogen Energy, 40, 4673, 10.1016/j.ijhydene.2015.02.031

Zhan, 2016, Int. J. Hydrogen Energy, 41, 13493, 10.1016/j.ijhydene.2016.06.087

Wassner, 2016, ChemElectroChem, 3, 1641, 10.1002/celc.201600246

Wassner, 2017, Electrochim. Acta, 227, 367, 10.1016/j.electacta.2016.12.145

Gebremariam, 2018, ACS Appl. Energy Mater., 1, 1612, 10.1021/acsaem.8b00067

Huang, 2018, J. Mater. Chem. A, 6, 22277, 10.1039/C8TA06743K

Dhakshinamoorthy, 2019, Adv. Mater., 31, 1900617, 10.1002/adma.201900617

Zeng, 2016, ACS Catal., 6, 7935, 10.1021/acscatal.6b02228

Masoomi, 2019, Angew. Chem., Int. Ed., 58, 15188, 10.1002/anie.201902229

Fang, 2020, Chem. Soc. Rev., 49, 3638, 10.1039/D0CS00070A

Hira, 2020, Anal. Chim. Acta, 1118, 26, 10.1016/j.aca.2020.04.043

Hou, 2014, Adv. Energy Mater., 4, 1400337, 10.1002/aenm.201400337

Zhao, 2019, J. Mater. Chem. A, 7, 15519, 10.1039/C9TA03833G

Wang, 2020, Chem. Soc. Rev., 44, 2168

Lu, 2020, Angew. Chem., Int. Ed., 59, 4634, 10.1002/anie.201910309

Li, 2019, J. Mater. Chem. A, 7, 1964, 10.1039/C8TA11704G

Kim, 2018, Nanomaterials, 8, 138, 10.3390/nano8030138

Xue, 2021, Nano Energy, 86, 106073, 10.1016/j.nanoen.2021.106073

Fang, 2019, J. Catal., 371, 185, 10.1016/j.jcat.2019.02.005

Liang, 2020, Mater. Today Energy, 27, 100433, 10.1016/j.mtener.2020.100433

Sikdar, 2017, Chem.–Eur. J., 23, 18049, 10.1002/chem.201704211

Singh, 2020, Inorg. Chem., 59, 3160, 10.1021/acs.inorgchem.9b03516

Luo, 2018, Ind. Eng. Chem. Res., 57, 12087, 10.1021/acs.iecr.8b02744

Lu, 2016, ACS Catal., 6, 1045, 10.1021/acscatal.5b02302

Cui, 2020, Nano Energy, 70, 104525, 10.1016/j.nanoen.2020.104525

Chen, 2014, J. Mater. Chem. A, 2, 16811, 10.1039/C4TA02984D

Thomas, 2016, ACS Appl. Mater. Interfaces, 8, 29373, 10.1021/acsami.6b06979

Li, 2019, J. Mater. Chem. A, 7, 25853, 10.1039/C9TA08926H

Chen, 2017, Chem. Eng. J., 330, 736, 10.1016/j.cej.2017.08.024

Liu, 2020, ACS Sustainable Chem. Eng., 8, 4194, 10.1021/acssuschemeng.9b07276

Wang, 2020, ChemElectroChem, 7, 1590, 10.1002/celc.202000038

Xiao, 2014, J. Mater. Chem. A, 2, 3794, 10.1039/c3ta14453d

Zhen, 2018, RSC Adv., 8, 14462, 10.1039/C8RA01680A

Senthilkumar, 2018, Adv. Energy Mater., 8, 1702207, 10.1002/aenm.201702207

Liu, 2017, J. Mater. Chem. A, 5, 5865, 10.1039/C6TA10591B

Hai, 2020, ACS Catal., 10, 5862, 10.1021/acscatal.0c00936

Xiao, 2015, Nanoscale, 7, 7056

Zhang, 2018, Carbon, 133, 306, 10.1016/j.carbon.2018.03.044

Peera, 2018, Small, 14, 1800441, 10.1002/smll.201800441

Noh, 2020, J. Mater. Chem. A, 8, 18891, 10.1039/D0TA06489K

Yusuf, 2019, Electrochim. Acta, 325, 134938, 10.1016/j.electacta.2019.134938

Li, 2018, ChemSusChem, 11, 3292, 10.1002/cssc.201801084

Liu, 2018, Carbon, 127, 636, 10.1016/j.carbon.2017.11.051

Wu, 2020, J. Colloid Interface Sci., 566, 194, 10.1016/j.jcis.2020.01.078

Yao, 2014, J. Mater. Chem. A, 2, 11768, 10.1039/C4TA01237B

Tong, 2019, Catalysts, 9, 692, 10.3390/catal9080692

Wei, 2018, Appl. Surf. Sci., 439, 439, 10.1016/j.apsusc.2018.01.056

Zhou, 2021, ACS Catal., 11, 74, 10.1021/acscatal.0c03496

Zhang, 2020, Chem. Eng. J., 396, 125154, 10.1016/j.cej.2020.125154

Zhou, 2018, Microporous Mesoporous Mater., 261, 88, 10.1016/j.micromeso.2017.10.050

Jin, 2013, J. Mater. Chem. A, 1, 10538, 10.1039/c3ta11144j

Liu, 2020, Small Methods, 4, 1900571, 10.1002/smtd.201900571

Liu, 2020, J. Mater. Chem. A, 8, 18162, 10.1039/D0TA05510G

Lai, 2012, Energy Environ. Sci., 5, 7936, 10.1039/c2ee21802j

Ejaz, 2018, Int. J. Hydrogen Energy, 43, 5690, 10.1016/j.ijhydene.2017.12.184

Ejaz, 2017, Sens. Actuators, B, 240, 297, 10.1016/j.snb.2016.08.171

Wang, 2018, ACS Catal., 8, 6827, 10.1021/acscatal.8b00338

Begum, 2020, Sci. Rep., 10, 12431, 10.1038/s41598-020-68260-3

Faisal, 2017, RSC Adv., 7, 17950, 10.1039/C7RA01355H

Ning, 2019, Chem. Sci., 10, 1589, 10.1039/C8SC04596H

Wang, 2013, Sci. Rep., 3, 2431, 10.1038/srep02431

Yang, 2012, ACS Nano, 6, 205, 10.1021/nn203393d

Park, 2014, Phys. Chem. Chem. Phys., 16, 103, 10.1039/C3CP54311K

Tavakol, 2016, RSC Adv., 6, 63084, 10.1039/C6RA11447D

Yan, 2016, Carbon, 99, 195, 10.1016/j.carbon.2015.12.011

Huang, 2017, J. Mater. Chem. A, 5, 19790, 10.1039/C7TA05030E

Perivoliotis, 2018, ACS Appl. Energy Mater., 1, 3869, 10.1021/acsaem.8b00631

Li, 2015, ACS Catal., 5, 4133, 10.1021/acscatal.5b00601

Liu, 2011, Angew. Chem., Int. Ed., 50, 3257, 10.1002/anie.201006768

Alsabban, 2019, ACS Appl. Mater. Interfaces, 11, 20752, 10.1021/acsami.9b01847

Yu, 2019, ACS Appl. Energy Mater., 2, 2645, 10.1021/acsaem.8b02249

Cheng, 2019, Chem. Mater., 31, 8026, 10.1021/acs.chemmater.9b02436

Liu, 2018, Nano Lett., 18, 7870, 10.1021/acs.nanolett.8b03666

Dar, 2018, J. Power Sources, 373, 61, 10.1016/j.jpowsour.2017.11.006

Lee, 2011, Electrochim. Acta, 56, 8802, 10.1016/j.electacta.2011.07.084

Periasamy, 2016, J. Mater. Chem. A, 4, 12987, 10.1039/C6TA03684H

Wang, 2016, J. Phys. Chem. C, 120, 17427, 10.1021/acs.jpcc.6b04639

Yang, 2011, Angew. Chem., Int. Ed., 50, 7132, 10.1002/anie.201101287

Cao, 2018, ACS Sustainable Chem. Eng., 6, 15582, 10.1021/acssuschemeng.8b04029

Xue, 2013, Phys. Chem. Chem. Phys., 15, 12220, 10.1039/c3cp51942b

Zhu, 2013, J. Mater. Chem. A, 1, 14700, 10.1039/c3ta13318d

Dahal, 2020, J. Power Sources, 453, 227883, 10.1016/j.jpowsour.2020.227883

Liu, 2016, Electrochim. Acta, 194, 161, 10.1016/j.electacta.2016.02.002

Pei, 2019, ChemCatChem, 11, 4617, 10.1002/cctc.201900886

Chen, 2015, Nanoscale, 7, 20674, 10.1039/C5NR07429K

Han, 2018, Small, 14, 1703642, 10.1002/smll.201703642

Li, 2017, Electrochim. Acta, 253, 445, 10.1016/j.electacta.2017.08.143

Kim, 2019, ACS Catal., 9, 11242, 10.1021/acscatal.9b03155

Chinnadurai, 2020, ChemCatChem, 12, 2348, 10.1002/cctc.202000164

Rajendiran, 2019, Electrochim. Acta, 317, 1, 10.1016/j.electacta.2019.05.139

Tan, 2019, ACS Sustainable Chem. Eng., 7, 6335, 10.1021/acssuschemeng.9b00026

Wang, 2018, ACS Sustainable Chem. Eng., 6, 11768, 10.1021/acssuschemeng.8b02015

Zagal, 2016, Angew. Chem., Int. Ed., 55, 14510, 10.1002/anie.201604311

Yan, 2020, Cell Rep. Phys. Sci., 1, 100083, 10.1016/j.xcrp.2020.100083

Wei, 2017, Adv. Mater., 29, 1606800, 10.1002/adma.201606800

Shin, 2015, Nanoscale, 7, 15830, 10.1039/C5NR04706D

Specchia, 2021, Curr. Opin. Electrochem., 27, 100687, 10.1016/j.coelec.2021.100687

Marshall-Roth, 2020, Nat. Commun., 11, 5283, 10.1038/s41467-020-18969-6

Asset, 2020, Joule, 4, 33, 10.1016/j.joule.2019.12.002

Holby, 2014, J. Phys. Chem. C, 118, 14388, 10.1021/jp503266h

Nørskov, 2004, J. Phys. Chem. B, 108, 17886, 10.1021/jp047349j

Li, 2014, J. Catal., 314, 66, 10.1016/j.jcat.2014.03.011

Fazio, 2014, J. Catal., 318, 203, 10.1016/j.jcat.2014.07.024

Ma, 2020, Nanoscale, 12, 19375, 10.1039/D0NR03521A

Schmidt, 2003, Phys. Chem. Chem. Phys., 5, 400, 10.1039/b208322a

He, 2016, J. Am. Chem. Soc., 138, 1494, 10.1021/jacs.5b12530

Yang, 2018, Adv. Mater. Sci. Eng., 2018, 1734040, 10.1155/2018/1734040

Zhang, 2016, Angew. Chem., Int. Ed., 55, 2230, 10.1002/anie.201510495

Li, 2016, Small, 12, 2839, 10.1002/smll.201600336

Guo, 2019, Int. J. Hydrogen Energy, 44, 3625, 10.1016/j.ijhydene.2018.12.082

Li, 2019, J. Colloid Interface Sci., 546, 231, 10.1016/j.jcis.2019.03.079

Wang, 2018, Energy Storage Mater., 12, 1, 10.1016/j.ensm.2017.11.004

Li, 2019, J. Taiwan Inst. Chem. Eng., 100, 230, 10.1016/j.jtice.2019.04.030

Zhang, 2018, Chin. J. Catal., 39, 1427, 10.1016/S1872-2067(18)63107-9

Chen, 2019, J. Electroanal. Chem., 838, 16, 10.1016/j.jelechem.2019.02.025

Liu, 2017, Nano Res., 10, 1213, 10.1007/s12274-016-1300-x

Liu, 2018, Electrochim. Acta, 265, 221, 10.1016/j.electacta.2018.01.195

Yang, 2016, J. Power Sources, 307, 152, 10.1016/j.jpowsour.2015.12.110

Chen, 2018, Carbon, 132, 172, 10.1016/j.carbon.2018.02.051

Liu, 2016, J. Mater. Chem. A, 4, 11357, 10.1039/C6TA03265F

Zhao, 2014, ACS Nano, 8, 12660, 10.1021/nn505582e

Xia, 2015, Energy Environ. Sci., 8, 568, 10.1039/C4EE02281E

Xi, 2015, Chem. Commun., 51, 10479, 10.1039/C5CC03946K

Wang, 2014, J. Mater. Chem. A, 2, 14064, 10.1039/C4TA01506A

Xia, 2016, Nat. Energy, 1, 15006, 10.1038/nenergy.2015.6

Wei, 2015, Adv. Funct. Mater., 25, 5768, 10.1002/adfm.201502311

Zhang, 2014, Energy Environ. Sci., 7, 442, 10.1039/C3EE42799D

Gao, 2019, J. Am. Chem. Soc., 141, 11658, 10.1021/jacs.9b05006

Meng, 2017, J. Mater. Chem. A, 5, 7001, 10.1039/C7TA01453H

Shen, 2015, ACS Appl. Mater. Interfaces, 7, 1207, 10.1021/am507033x

Zhong, 2017, ACS Appl. Mater. Interfaces, 9, 2541, 10.1021/acsami.6b14942

Destro, 2020, Angew. Chem., Int. Ed., 59, 13490, 10.1002/anie.202002341

Huang, 2014, Nano Res., 7, 1054, 10.1007/s12274-014-0468-1

Cao, 2013, Angew. Chem., Int. Ed., 52, 10753, 10.1002/anie.201303197

Lin, 2014, J. Am. Chem. Soc., 136, 11027, 10.1021/ja504696r

Liu, 2015, Adv. Funct. Mater., 25, 5799, 10.1002/adfm.201502217

Wang, 2017, Chem. Mater., 29, 9915, 10.1021/acs.chemmater.7b03100

Parvez, 2012, ACS Nano, 6, 9541, 10.1021/nn302674k

Gao, 2018, Energy Technol., 6, 2282, 10.1002/ente.201800189

Li, 2019, Carbon, 150, 93, 10.1016/j.carbon.2019.05.012

Lin, 2018, J. Alloys Compd., 769, 136, 10.1016/j.jallcom.2018.07.269

Liang, 2018, J. Power Sources, 378, 699, 10.1016/j.jpowsour.2018.01.013

Huang, 2019, ACS Sustainable Chem. Eng., 7, 3185, 10.1021/acssuschemeng.8b05033

Chen, 2017, J. Power Sources, 360, 106, 10.1016/j.jpowsour.2017.05.120

Liang, 2020, Electrochim. Acta, 335, 135666, 10.1016/j.electacta.2020.135666

Li, 2017, J. Mater. Chem. A, 5, 21353, 10.1039/C7TA06243E

Dou, 2016, Energy Environ. Sci., 9, 1320, 10.1039/C6EE00054A

Zhu, 2016, Adv. Mater., 28, 6391, 10.1002/adma.201600979

Gu, 2016, Chem. Sci., 7, 4167, 10.1039/C6SC00357E

Wu, 2017, Nanoscale, 9, 12432, 10.1039/C7NR03950F

Kohila Rani, 2020, Ultrason. Sonochem., 66, 105111, 10.1016/j.ultsonch.2020.105111

Li, 2018, Nanoscale, 10, 2649, 10.1039/C7NR07235J

Cai, 2020, ACS Appl. Mater. Interfaces, 12, 5847, 10.1021/acsami.9b19268

Liu, 2018, Small, 14, 1703748, 10.1002/smll.201703748

Han, 2017, Nano Energy, 31, 541, 10.1016/j.nanoen.2016.12.008

He, 2017, Adv. Sci., 4, 1600214, 10.1002/advs.201600214

Ao, 2020, Energy Environ. Sci., 13, 3032, 10.1039/D0EE00832J

Tian, 2019, Science, 366, 850, 10.1126/science.aaw7493

Wu, 2019, Appl. Catal., B, 251, 49, 10.1016/j.apcatb.2019.03.045

Zhang, 2019, Nano Energy, 60, 111, 10.1016/j.nanoen.2019.03.033

Li, 2018, Chem, 4, 2345, 10.1016/j.chempr.2018.07.005

Pei, 2017, Energy Environ. Sci., 10, 742, 10.1039/C6EE03265F

Shi, 2013, J. Mater. Chem. A, 1, 14853, 10.1039/c3ta12647a

Choi, 2013, J. Mater. Chem. A, 1, 3694, 10.1039/c3ta01648j

Yang, 2016, Adv. Mater., 28, 4606, 10.1002/adma.201505855

Zhang, 2015, Nat. Nanotechnol., 10, 444, 10.1038/nnano.2015.48

Liu, 2018, Angew. Chem., Int. Ed., 57, 1204, 10.1002/anie.201709597

Zhao, 2021, Int. J. Electrochem. Sci., 16, 21079, 10.20964/2021.07.05

Han, 2017, J. Am. Chem. Soc., 139, 17269, 10.1021/jacs.7b10194

Chen, 2018, Nat. Commun., 9, 5422, 10.1038/s41467-018-07850-2

Masa, 2013, Electrochem. Commun., 34, 113, 10.1016/j.elecom.2013.05.032

Li, 2018, Energy Environ. Sci., 11, 2263, 10.1039/C8EE01169A

Sa, 2016, J. Am. Chem. Soc., 138, 15046, 10.1021/jacs.6b09470

Chen, 2017, Angew. Chem., Int. Ed., 56, 610, 10.1002/anie.201610119

Kim, 2017, ACS Appl. Mater. Interfaces, 9, 9567, 10.1021/acsami.6b13417

Malko, 2016, J. Am. Chem. Soc., 138, 16056, 10.1021/jacs.6b09622

Zhang, 2018, Adv. Mater. Interfaces, 5, 1701641, 10.1002/admi.201701641

Xiao, 2017, J. Mater. Chem. A, 5, 11114, 10.1039/C7TA02096A

Wang, 2017, ACS Appl. Mater. Interfaces, 9, 10610, 10.1021/acsami.6b15392

Wang, 2017, Nano Lett., 17, 2003, 10.1021/acs.nanolett.7b00004

Mulyadi, 2017, Nano Energy, 32, 336, 10.1016/j.nanoen.2016.12.057

Gawande, 2015, Chem. Soc. Rev., 44, 7540, 10.1039/C5CS00343A

Huang, 2015, ACS Appl. Mater. Interfaces, 7, 1978, 10.1021/am507787t

Zhao, 2016, Inorg. Chem. Front., 3, 417, 10.1039/C5QI00236B

Jiang, 2015, ACS Catal., 5, 6707, 10.1021/acscatal.5b01835

Zhu, 2018, Small, 14, 1800563, 10.1002/smll.201800563

Rauf, 2020, Front. Chem., 8, 78, 10.3389/fchem.2020.00078

Fu, 2017, Adv. Mater., 29, 1702526, 10.1002/adma.201702526

Lu, 2016, Adv. Mater., 28, 7155, 10.1002/adma.201504652

Wang, 2017, Small, 13, 1601250, 10.1002/smll.201601250