Toxicity evaluation of process water from hydrothermal carbonization of sugarcane industry by-products
Tóm tắt
Từ khóa
Tài liệu tham khảo
Bargmann I, Rillig MC, Buss W, Kruse A, Kuecke M (2013) Hydrochar and biochar effects on germination of spring barley. J Agron Crop Sci 199:360–373. https://doi.org/10.1111/jac.12024
Bargmann I, Rillig MC, Kruse A, Greef JM, Kücke M (2014) Effects of hydrochar application on the dynamics of soluble nitrogen in soils and on plant availability. J Plant Nutr Soil Sci 177:48–58. https://doi.org/10.1002/jpln.201300069
Begum P, Ikhtiari R, Fugetsu B (2011) Graphene phytotoxicity in the seedling stage of cabbage, tomato, red spinach, and lettuce. Carbon 49:3907–3919. https://doi.org/10.1016/j.carbon.2011.05.029
Bhattacharya J, Khuspe SS (2001) In vitro and in vivo germination of papaya (Carica papaya L.) seeds. Sci Hortic. https://doi.org/10.1016/S0304-4238(01)00237-0
Biller P, Ross AB, Skill SC, Lea-Langton A, Balasundaram B, Hall C, Riley R, Llewellyn CA (2012) Nutrient recycling of aqueous phase for microalgae cultivation from the hydrothermal liquefaction process. Algal Res 1:70–76. https://doi.org/10.1016/j.algal.2012.02.002
Bueno PC, Antonio J, Rubí M et al (2009) Impacts caused by the addition of wine vinasse on some chemical and mineralogical properties of a Luvisol and a Vertisol in La Mancha (Central Spain). J Soils Sediments 9:121–128. https://doi.org/10.1007/s11368-009-0074-0
Cançado PHD, Ferreira T, Piranda EM, Soares CO (2013) Sugarcane stems as larval habitat for the stable fly (stomoxys calcitrans) in sugarcane plantations. Pesqui Vet Bras 33:741–744. https://doi.org/10.1590/S0100-736X2013000600009
Carrijo OA, de Souza RB, Marouelli WA, de Andrade RJ (2004) Fertirrigação de Hortaliças. In: 32 Circular Técnica. EMBRAPA, pp 1–13
Christofoletti CA, Escher JP, Correia JE, Marinho JFU, Fontanetti CS (2013) Sugarcane vinasse: environmental implications of its use. Waste Manag 33:2752–2761. https://doi.org/10.1016/j.wasman.2013.09.005
Coelho AM (2006) Nutrição e Adubação do Milho. In: 78 Circular Técnica, 1st edn. EMBRAPA, Sete Lagoas, pp 10
de Assis Alves T, Fontes Pinheiro P, Miranda Praça-Fontes M, Fonseca Andrade-Vieira L, Barelo Corrêa K, de Assis Alves T, da Cruz FA, Lacerda Júnior V, Ferreira A, Bastos Soares TC (2018) Toxicity of thymol, carvacrol and their respective phenoxyacetic acids in Lactuca sativa and Sorghum bicolor. Ind Crop Prod 114:59–67. https://doi.org/10.1016/j.indcrop.2018.01.071
De Oliveira BG, Carvalho JLN, Cerri CEP et al (2013) Soil greenhouse gas fluxes from vinasse application in Brazilian sugarcane areas. Geoderma 200–201:77–84. https://doi.org/10.1016/j.geoderma.2013.02.005
de Souza Dias MO, Maciel Filho R, Mantelatto PE et al (2015) Sugarcane processing for ethanol and sugar in Brazil. Environ Dev 15:35–51. https://doi.org/10.1016/j.envdev.2015.03.004
de Tunes LM, Avelar SAG, Barros ACSA et al (2012) Critical levels of organic acids on seed germination and seedling growth of wheat. Rev Bras Sementes 34:366–372. https://doi.org/10.1590/S0101-31222012000300002
Du Z, Hu B, Shi A et al (2012) Cultivation of a microalga Chlorella vulgaris using recycled aqueous phase nutrients from hydrothermal carbonization process. Bioresour Technol 126:354–357. https://doi.org/10.1016/j.biortech.2012.09.062
Embrapa (2000) Determinações Analíticas. In: do Carmo CAF de S, de Araújo WS, Bernardi AC de C, Saldanha MFC (eds) Métodos de análise de tecidos vegetais utlizados na Embrapa Solos. Embrapa Solos, Rio de Janeiro, p 47
Fang J, Gao B, Chen J, Zimmerman AR (2015) Hydrochars derived from plant biomass under various conditions: characterization and potential applications and impacts. Chem Eng J 267:253–259. https://doi.org/10.1016/j.cej.2015.01.026
Finney DJ (1971) Probit analysis. Cambridge University Press, Cambridge, p 333
Funke A, Ziegler F (2010) Hydrothermal carbonization of biomass: a summary and discussion of chemical mechanisms for process engineering. Biofuels Bioprod Biorefin 4:160–177. https://doi.org/10.1002/bbb.198
George C, Wagner M, Kücke M, Rillig MC (2012) Divergent consequences of hydrochar in the plant-soil system: arbuscular mycorrhiza, nodulation, plant growth and soil aggregation effects. Appl Soil Ecol 59:68–72. https://doi.org/10.1016/j.apsoil.2012.02.021
GESAMP (2002) The revised GESAMP hazard evaluation procedure for chemical substances carried by ships, 1st edn. IMO, London
Gonçalves SPC, Strauss M, Delite FS, Clemente Z, Castro VL, Martinez DST (2016) Activated carbon from pyrolysed sugarcane bagasse: silver nanoparticle modification and ecotoxicity assessment. Sci Total Environ 565:833–840. https://doi.org/10.1016/j.scitotenv.2016.03.041
Hofsetz K, Silva MA (2012) Brazilian sugarcane bagasse: energy and non-energy consumption. Biomass Bioenergy 46:564–573. https://doi.org/10.1016/j.biombioe.2012.06.038
Hognon C, Delrue F, Texier J, Grateau M, Thiery S, Miller H, Roubaud A (2015) Comparison of pyrolysis and hydrothermal liquefaction of Chlamydomonas reinhardtii. Growth studies on the recovered hydrothermal aqueous phase. Biomass Bioenergy 73:23–31. https://doi.org/10.1016/j.biombioe.2014.11.025
Jafarzadeh AA, Aliasgharzad N (2007) Salinity and salt composition effects on seed germination and root length of four sugar beet cultivars. Biologia 62:562–564. https://doi.org/10.2478/s11756-007-0111-7
Jelvez Serra NS, Goulart HF, Triana MF et al (2017) Identification of stable fly attractant compounds in vinasse, a byproduct of sugarcane–ethanol distillation. Med Vet Entomol 31:381–391. https://doi.org/10.1111/mve.12246
Joppert CL, Marilin M, Costa HKM, Sim R (2017) Biomass and bioenergy energetic shift of sugarcane bagasse using biogas produced from sugarcane vinasse in Brazilian ethanol plants
Kabadayi Catalkopru A, Kantarli IC, Yanik J (2017) Effects of spent liquor recirculation in hydrothermal carbonization. Bioresour Technol 226:89–93. https://doi.org/10.1016/j.biortech.2016.12.015
Kambo HS, Dutta A (2015) A comparative review of biochar and hydrochar in terms of production, physico-chemical properties and applications. Renew Sust Energ Rev 45:359–378. https://doi.org/10.1016/j.rser.2015.01.050
Kambo HS, Minaret J, Dutta A (2017) Process water from the hydrothermal carbonization of biomass: a waste or a valuable product? Waste Biomass Valoriz 1–9. https://doi.org/10.1007/s12649-017-9914-0
Kopp MM, Kopp V, Luiz J, Coimbra M (2007) Níveis críticos dos ácidos acético, propiônico e butírico para estudos de toxicidade em arroz em solução nutritiva. Acta Bot Bras 21:147–154. https://doi.org/10.1590/S0102-33062007000100014
Kuiters AT (1989) Effects of phenolic acids on germination and eraly growth of herbaceous woodland plants. J Chem Ecol 15:467–479
Li G, Chen J, Yan W, Sang N (2017) A comparison of the toxicity of landfill leachate exposure at the seed soaking and germination stages on Zea mays L. (maize). J Environ Sci (China) 55:206–213. https://doi.org/10.1016/j.jes.2016.06.031
Libra J, Ro KS, Kammann C et al (2011) Hydrothermal carbonization of biomass residuals: a comparative review of the chemistry, processes and applications of wet and dry pyrolysis. Biofuels 2:71–106. https://doi.org/10.4155/bfs.10.81
Lu X, Flora JRV, Berge ND (2014) Influence of process water quality on hydrothermal carbonization of cellulose. Bioresour Technol 154:229–239. https://doi.org/10.1016/j.biortech.2013.11.069
Lucian M, Fiori L (2017) Hydrothermal carbonization of waste biomass: process design, modeling, energy efficiency and cost analysis. Energies. https://doi.org/10.3390/en10020211
Madhav MR, David SEM, Kumar RSS, Swathy JS, Bhuvaneshwari M, Mukherjee A, Chandrasekaran N (2017) Toxicity and accumulation of copper oxide (CuO) nanoparticles in different life stages of Artemia salina. Environ Toxicol Pharmacol 52:227–238. https://doi.org/10.1016/j.etap.2017.03.013
Maguire JD (1962) Speed of germination—aid in selection and evaluation for seedling emergence and vigor. Croop Sci 2:176–177
Marinho JFU, Correia JE, Marcato ACDC et al (2014) Sugar cane vinasse in water bodies: impact assessed by liver histopathology in tilapia. Ecotoxicol Environ Saf 110C:239–245. https://doi.org/10.1016/j.ecoenv.2014.09.010
Melo CA, Junior FHS, Bisinoti MC, Moreira AB, Ferreira OP (2017a) Transforming sugarcane bagasse and vinasse wastes into hydrochar in the presence of phosphoric acid: an evaluation of nutrient contents and structural properties. Waste Biomass Valoriz 8:1139–1151. https://doi.org/10.1007/s12649-016-9664-4
Melo CDA, Julio RC, Laranja MJ, et al (2017b) Identification of organic compounds in the products obtained from the hydrothermal carbonization of sugarcane bagasse and vinasse. In: IUPAC 2017, pp 1
Melo TM, Bottlinger M, Schulz E, Leandro WM, de Aguiar Filho AM, Ok YS, Rinklebe J (2017c) Effect of biosolid hydrochar on toxicity to earthworms and brine shrimp. Environ Geochem Health 39:1–14. https://doi.org/10.1007/s10653-017-9995-5
Meyer B, Ferrigni N, Putnam J, Jacobsen L, Nichols D, McLaughlin J (1982) Brine shrimp: a convenient general bioassay for active plant constituents. Planta Medica 45(05):31–34
Moraes BS, Zaiat M, Bonomi A (2015) Anaerobic digestion of vinasse from sugarcane ethanol production in Brazil: challenges and perspectives. Renew Sust Energ Rev 44:888–903. https://doi.org/10.1016/j.rser.2015.01.023
Mosse KPM, Patti AF, Christen EW, Cavagnaro TR (2010) Winery wastewater inhibits seed germination and vegetative growth of common crop species. J Hazard Mater 180:63–70. https://doi.org/10.1016/j.jhazmat.2010.02.069
Oh TK, Shinogi Y, Chikushi J et al (2012) Effect of aqueous extract of biochar on germination and seedling growth of lettuce (Lactuca sativa L.) J Fac Agric Kyushu Univ 57:55–60
Oliveira I, Blöhse D, Ramke HG (2013) Hydrothermal carbonization of agricultural residues. Bioresour Technol 142:138–146. https://doi.org/10.1016/j.biortech.2013.04.125
Ozkan Y, Altinok I, Ilhan H, Sokmen M (2016) Determination of TiO2 and AgTiO2 nanoparticles in artemia salina: toxicity, morphological changes, uptake and depuration. Bull Environ Contam Toxicol 96(1):36–42
Paredes C, Cegarra J, Roig A, Bernal MP (1999) Characterization of olive mill wastewater (alpechin) and its sludge for agricultural purposes. Bioresour Technol 67:111–115
Parshetti GK, Liu Z, Jain A, Srinivasan MP, Balasubramanian R (2013) Hydrothermal carbonization of sewage sludge for energy production with coal. Fuel 111:201–210. https://doi.org/10.1016/j.fuel.2013.04.052
Pierantozzi P, Zampini C, Torres M, Isla MI, Verdenelli RA, Meriles JM, Maestri D (2012) Physico-chemical and toxicological assessment of liquid wastes from olive processing-related industries. J Sci Food Agric 92:216–223. https://doi.org/10.1002/jsfa.4562
Pinho IA, Lopes DV, Martins RC, Quina MJ (2017) Phytotoxicity assessment of olive mill solid wastes and the influence of phenolic compounds. Chemosphere 185:258–267. https://doi.org/10.1016/j.chemosphere.2017.07.002
Poerschmann J, Weiner B, Wedwitschka H, Baskyr I, Koehler R, Kopinke FD (2014) Characterization of biocoals and dissolved organic matter phases obtained upon hydrothermal carbonization of brewer’s spent grain. Bioresour Technol 164:162–169. https://doi.org/10.1016/j.biortech.2014.04.052
Priac A, Badot P-M, Crini G (2017) Treated wastewater phytotoxicity assessment using Lactuca sativa: focus on germination and root elongation test parameters. Comptes Rendus Biologies 340:188–194. https://doi.org/10.1016/j.crvi.2017.01.002
Reibe K, Götz K-P, Roß C-L, Döring TF, Ellmer F, Ruess L (2015) Impact of quality and quantity of biochar and hydrochar on soil Collembola and growth of spring wheat. Soil Biol Biochem 83:84–87. https://doi.org/10.1016/j.soilbio.2015.01.014
Rezende C, de Lima M, Maziero P, deAzevedo E, Garcia W, Polikarpov I (2011) Chemical and morphological characterization of sugarcane bagasse submitted to a delignification process for enhanced enzymatic digestibility. Biotechnol Biofuels 4:54. https://doi.org/10.1186/1754-6834-4-54
Rillig MC, Wagner M, Salem M, Antunes PM, George C, Ramke HG, Titirici MM, Antonietti M (2010) Material derived from hydrothermal carbonization: effects on plant growth and arbuscular mycorrhiza. Appl Soil Ecol 45:238–242. https://doi.org/10.1016/j.apsoil.2010.04.011
Ross AB, Biller P, Kubacki ML, Li H, Lea-Langton A, Jones JM (2010) Hydrothermal processing of microalgae using alkali and organic acids. Fuel 89:2234–2243. https://doi.org/10.1016/j.fuel.2010.01.025
Salem M, Kohler J, Wurst S, Rillig MC (2013) Earthworms can modify effects of hydrochar on growth of Plantago lanceolata and performance of arbuscular mycorrhizal fungi. Pedobiologia 56:219–224. https://doi.org/10.1016/j.pedobi.2013.08.003
Sang N, Han M, Li G, Huang M (2010) Landfill leachate affects metabolic responses of Zea mays L. seedlings. Waste Manag 30:856–862. https://doi.org/10.1016/j.wasman.2010.01.023
Silva P, Matos M (2016) Assessment of the impact of aluminum on germination, early growth and free proline content in Lactuca sativa L. Ecotoxicol Environ Saf 131:151–156. https://doi.org/10.1016/j.ecoenv.2016.05.014
Silva CC, Melo CA, Soares Junior FH, Moreira AB, Ferreira OP, Bisinoti MC (2017) Effect of the reaction medium on the immobilization of nutrients in hydrochars obtained using sugarcane industry residues. Bioresour Technol 237:213–221. https://doi.org/10.1016/j.biortech.2017.04.004
Sindhu R, Gnansounou E, Binod P, Pandey A (2016) Bioconversion of sugarcane crop residue for value added products e an overview. Renew Energy 98:203–215. https://doi.org/10.1016/j.renene.2016.02.057
Soni N, Leon RG, Erickson JE, Ferrell JA, Silveira ML, Giurcanu MC (2014) Vinasse and biochar effects on germination and growth of palmer Amaranth (Amaranthus palmeri), sicklepod (Senna obtusifolia), and southern crabgrass (Digitaria ciliaris). Weed Technol 28:694–702. https://doi.org/10.1614/WT-D-14-00044.1
Stemann J, Ziegler F (2011) Assessment of the energetic efficiency of a continuously operating plant for hydrothermal carbonisation of biomass. World Renewable Energy Congress 2011, Sweden, pp 125–132. https://doi.org/10.3384/ecp11057125
Stemann J, Erlach B, Ziegler F (2013) Hydrothermal carbonisation of empty palm oil fruit bunches: laboratory trials, plant simulation, carbon avoidance, and economic feasibility. Waste Biomass Valoriz 4:441–454. https://doi.org/10.1007/s12649-012-9190-y
Sun J, Drosos M, Mazzei P, Savy D, Todisco D, Vinci G, Pan G, Piccolo A (2017) The molecular properties of biochar carbon released in dilute acidic solution and its effects on maize seed germination. Sci Total Environ 576:858–867. https://doi.org/10.1016/j.scitotenv.2016.10.095
Tekin K, Karagöz S, Bektaş S (2013) Hydrothermal conversion of woody biomass with disodium octaborate tetrahydrate and boric acid. Ind Crop Prod 49:334–340. https://doi.org/10.1016/j.indcrop.2013.05.014
Trani PE, Tivelli SW, Carrijo OA (2011) Boletim Técnico n°196: Fertirrigação em Hortaliças, 2nd edn. Instituto Agronômico (IAC), Campinas
Urbano VR, Mendonça TG, Bastos RG, Souza CF (2017) Effects of treated wastewater irrigation on soil properties and lettuce yield. Agric Water Manag 181:108–115. https://doi.org/10.1016/j.agwat.2016.12.001
US EPA (1992) Acid digestion of aqueous samples and extracts for total metals for analysis by FLAA or ICP spectroscopy. In: Test Methods for Evaluating Solid Waste, Phiysical/Chemical Methods (SW-846). pp 1–5
Vozhdayev GV, Spokas KA, Molde JS, Heilmann SM, Wood BM, Valentas KJ (2015) Response of maize germination and growth to hydrothermal carbonization filtrate type and amount. Plant Soil 396:127–136. https://doi.org/10.1007/s11104-015-2577-3
Weiner B, Poerschmann J, Wedwitschka H, Koehler R, Kopinke FD (2014) Influence of process water reuse on hydrothermal carbonization of paper. ACS Sustain Chem Eng 2:2165–2171. https://doi.org/10.1021/sc500348v
Williamns RD, Hoagland RE (1982) The effects of naturally occurring phenolic compounds on seed germination. Weed Sci 30:206–212
Yoshimura M, Byrappa K (2008) Hydrothermal processing of materials: past, present and future. J Mater Sci 43:2085–2103. https://doi.org/10.1007/s10853-007-1853-x
Young BJ, Riera NI, Beily ME, Bres PA, Crespo DC, Ronco AE (2012) Toxicity of the effluent from an anaerobic bioreactor treating cereal residues on Lactuca sativa. Ecotoxicol Environ Saf 76:182–186. https://doi.org/10.1016/j.ecoenv.2011.09.019