Brain–machine interfaces: past, present and future

Trends in Neurosciences - Tập 29 - Trang 536-546 - 2006
Mikhail A. Lebedev1, Miguel A.L. Nicolelis2
1Department of Neurobiology and Center for Neuroengineering, Duke University, Durham, NC 27710, USA
2Department of Biomedical Engineering and Department of Psychological and Brain Sciences, Duke University, Durham, NC 27710, USA

Tài liệu tham khảo

Chapin, 1999, Real-time control of a robot arm using simultaneously recorded neurons in the motor cortex, Nat. Neurosci., 2, 664, 10.1038/10223 Wolpaw, 2002, Brain–computer interfaces for communication and control, Clin. Neurophysiol., 113, 767, 10.1016/S1388-2457(02)00057-3 Birbaumer, 1999, A spelling device for the paralysed, Nature, 398, 297, 10.1038/18581 Hinterberger, 2005, Neuronal mechanisms underlying control of a brain–computer interface, Eur. J. Neurosci., 21, 3169, 10.1111/j.1460-9568.2005.04092.x Kubler, 2001, Brain–computer communication: unlocking the locked in, Psychol. Bull., 127, 358, 10.1037/0033-2909.127.3.358 Kubler, 2001, Brain–computer communication: self-regulation of slow cortical potentials for verbal communication, Arch. Phys. Med. Rehabil., 82, 1533, 10.1053/apmr.2001.26621 Obermaier, 2003, Virtual keyboard controlled by spontaneous EEG activity, IEEE Trans. Neural Syst. Rehabil. Eng., 11, 422, 10.1109/TNSRE.2003.816866 Obermaier, 2001, Information transfer rate in a five-classes brain–computer interface, IEEE Trans. Neural Syst. Rehabil. Eng., 9, 283, 10.1109/7333.948456 Sheikh, 2003, Electroencephalographic (EEG)-based communication: EEG control versus system performance in humans, Neurosci. Lett., 345, 89, 10.1016/S0304-3940(03)00470-1 Wolpaw, 2004, Brain-computer interfaces (BCIs) for communication and control: a mini-review, Suppl. Clin. Neurophysiol., 57, 607, 10.1016/S1567-424X(09)70400-3 Birbaumer, 2006, Brain–computer-interface research: coming of age, Clin. Neurophysiol., 117, 479, 10.1016/j.clinph.2005.11.002 Nowlis, 1970, The control of electroencephalographic alpha rhythms through auditory feedback and the associated mental activity, Psychophysiology, 6, 476, 10.1111/j.1469-8986.1970.tb01756.x Plotkin, 1976, On the self-regulation of the occipital alpha rhythm: control strategies, states of consciousness, and the role of physiological feedback, J. Exp. Psychol. Gen., 105, 66, 10.1037/0096-3445.105.1.66 Wyricka, 1968, Instrumental conditioning of sensorimotor cortex EEG spindles in the waking cat, Psychol Behav, 3, 703 Sterman, 1974, Biofeedback training of the sensorimotor electroencephalogram rhythm in man: effects on epilepsy, Epilepsia, 15, 395, 10.1111/j.1528-1157.1974.tb04016.x Black, 1971, The direct control of neural processes by reward and punishment, Am. Sci., 59, 236 Middendorf, 2000, Brain–computer interfaces based on the steady-state visual-evoked response, IEEE Trans. Rehabil. Eng., 8, 211, 10.1109/86.847819 Sutter, 1992, The field topography of ERG components in man – I. The photopic luminance response, Vision Res., 32, 433, 10.1016/0042-6989(92)90235-B Kelly, 2005, Visual spatial attention control in an independent brain–computer interface, IEEE Trans. Biomed. Eng., 52, 1588, 10.1109/TBME.2005.851510 Donchin, 2000, The mental prosthesis: assessing the speed of a P300-based brain-computer interface, IEEE Trans. Rehabil. Eng., 8, 174, 10.1109/86.847808 Piccione, 2006, P300-based brain computer interface: reliability and performance in healthy and paralysed participants, Clin. Neurophysiol., 117, 531, 10.1016/j.clinph.2005.07.024 Sellers, 2006, A P300-based brain–computer interface: initial tests by ALS patients, Clin. Neurophysiol., 117, 538, 10.1016/j.clinph.2005.06.027 Birbaumer, 2000, The thought translation device (TTD) for completely paralyzed patients, IEEE Trans. Rehabil. Eng., 8, 190, 10.1109/86.847812 Pfurtscheller, 2006, Mu rhythm (de)synchronization and EEG single-trial classification of different motor imagery tasks, NeuroImage, 33, 153, 10.1016/j.neuroimage.2005.12.003 Pfurtscheller, 2003, Graz-BCI: state of the art and clinical applications, IEEE Trans. Neural Syst. Rehabil. Eng., 11, 177, 10.1109/TNSRE.2003.814454 Wolpaw, 2004, Control of a two-dimensional movement signal by a noninvasive brain–computer interface in humans, Proc. Natl. Acad. Sci. U. S. A., 101, 17849, 10.1073/pnas.0403504101 Pfurtscheller, 1999, Event-related EEG/MEG synchronization and desynchronization: basic principles, Clin. Neurophysiol., 110, 1842, 10.1016/S1388-2457(99)00141-8 Bayliss, 2000, A virtual reality testbed for brain–computer interface research, IEEE Trans. Rehabil. Eng., 8, 188, 10.1109/86.847811 Pfurtscheller, 2006, Walking from thought, Brain Res., 1071, 145, 10.1016/j.brainres.2005.11.083 Leuthardt, 2004, A brain–computer interface using electrocorticographic signals in humans, J Neural Eng, 1, 63, 10.1088/1741-2560/1/2/001 Hinterberger, 2003, A brain–computer interface (BCI) for the locked-in: comparison of different EEG classifications for the thought translation device, Clin. Neurophysiol., 114, 416, 10.1016/S1388-2457(02)00411-X Kubler, 2005, Patients with ALS can use sensorimotor rhythms to operate a brain–computer interface, Neurology, 64, 1775, 10.1212/01.WNL.0000158616.43002.6D Pfurtscheller, 2003, ‘Thought’ control of functional electrical stimulation to restore hand grasp in a patient with tetraplegia, Neurosci. Lett., 351, 33, 10.1016/S0304-3940(03)00947-9 Keith, 1989, Implantable functional neuromuscular stimulation in the tetraplegic hand, J. Hand Surg. (Am.), 14, 524, 10.1016/S0363-5023(89)80017-6 Weiskopf, 2004, Self-regulation of local brain activity using real-time functional magnetic resonance imaging (fMRI), J. Physiol. (Paris), 98, 357, 10.1016/j.jphysparis.2005.09.019 Light, 2002, Intelligent multifunction myoelectric control of hand prostheses, J. Med. Eng. Technol., 26, 139, 10.1080/03091900210142459 Navarro, 2005, A critical review of interfaces with the peripheral nervous system for the control of neuroprostheses and hybrid bionic systems, J. Peripher. Nerv. Syst., 10, 229, 10.1111/j.1085-9489.2005.10303.x Okuno, 2005, Compliant grasp in a myoelectric hand prosthesis. Controlling flexion angle and compliance with electromyogram signals, IEEE Eng. Med. Biol. Mag., 24, 48, 10.1109/MEMB.2005.1463396 Zecca, 2002, Control of multifunctional prosthetic hands by processing the electromyographic signal, Crit. Rev. Biomed. Eng., 30, 459, 10.1615/CritRevBiomedEng.v30.i456.80 Fetz, 1969, Operant conditioning of cortical unit activity, Science, 163, 955, 10.1126/science.163.3870.955 Fetz, 1992, Are movement parameters recognizably coded in activity of single neurons?, Behav Brain Sci., 15, 679 Fetz, 1973, Operantly conditioned patterns on precentral unit activity and correlated responses in adjacent cells and contralateral muscles, J. Neurophysiol., 36, 179, 10.1152/jn.1973.36.2.179 Fetz, 1971, Operant conditioning of specific patterns of neural and muscular activity, Science, 174, 431, 10.1126/science.174.4007.431 Fetz, 1972, Operant conditioning of isolated activity in specific muscles and precentral cells, Brain Res., 40, 19, 10.1016/0006-8993(72)90100-X Fetz, 1975, Correlations between activity of motor cortex cells and arm muscles during operantly conditioned response patterns, Exp. Brain Res., 23, 217, 10.1007/BF00239736 Schmidt, 1980, Single neuron recording from motor cortex as a possible source of signals for control of external devices, Ann. Biomed. Eng., 8, 339, 10.1007/BF02363437 Nicolelis, 1995, Sensorimotor encoding by synchronous neural ensemble activity at multiple levels of the somatosensory system, Science, 268, 1353, 10.1126/science.7761855 Nicolelis, 2003, Chronic, multisite, multielectrode recordings in macaque monkeys, Proc. Natl. Acad. Sci. U. S. A., 100, 11041, 10.1073/pnas.1934665100 Nicolelis, 1997, Reconstructing the engram: simultaneous, multisite, many single neuron recordings, Neuron, 18, 529, 10.1016/S0896-6273(00)80295-0 Nicolelis, 2002, Multielectrode recordings: the next steps, Curr. Opin. Neurobiol., 12, 602, 10.1016/S0959-4388(02)00374-4 Nicolelis, 2001, Actions from thoughts, Nature, 409, 403, 10.1038/35053191 Ghazanfar, 2000, Encoding of tactile stimulus location by somatosensory thalamocortical ensembles, J. Neurosci., 20, 3761, 10.1523/JNEUROSCI.20-10-03761.2000 Krupa, 2004, Layer-specific somatosensory cortical activation during active tactile discrimination, Science, 304, 1989, 10.1126/science.1093318 Wessberg, 2000, Real-time prediction of hand trajectory by ensembles of cortical neurons in primates, Nature, 408, 361, 10.1038/35042582 Serruya, 2002, Instant neural control of a movement signal, Nature, 416, 141, 10.1038/416141a Taylor, 2002, Direct cortical control of 3D neuroprosthetic devices, Science, 296, 1829, 10.1126/science.1070291 Carmena, 2003, Learning to control a brain-machine interface for reaching and grasping by primates, PLoS Biol., 1, E42, 10.1371/journal.pbio.0000042 Lebedev, 2005, Cortical ensemble adaptation to represent velocity of an artificial actuator controlled by a brain–machine interface, J. Neurosci., 25, 4681, 10.1523/JNEUROSCI.4088-04.2005 Mehring, 2003, Inference of hand movements from local field potentials in monkey motor cortex, Nat. Neurosci., 6, 1253, 10.1038/nn1158 Rickert, 2005, Encoding of movement direction in different frequency ranges of motor cortical local field potentials, J. Neurosci., 25, 8815, 10.1523/JNEUROSCI.0816-05.2005 Pesaran, 2002, Temporal structure in neuronal activity during working memory in macaque parietal cortex, Nat. Neurosci., 5, 805, 10.1038/nn890 Scherberger, 2005, Cortical local field potential encodes movement intentions in the posterior parietal cortex, Neuron, 46, 347, 10.1016/j.neuron.2005.03.004 Tillery, 2004, Signal acquisition and analysis for cortical control of neuroprosthetics, Curr. Opin. Neurobiol., 14, 758, 10.1016/j.conb.2004.10.013 Musallam, 2004, Cognitive control signals for neural prosthetics, Science, 305, 258, 10.1126/science.1097938 Patil, 2004, Ensemble recordings of human subcortical neurons as a source of motor control signals for a brain–machine interface, Neurosurgery, 55, 27, 10.1227/01.NEU.0000126872.23715.E5 Evarts, 1966, Pyramidal tract activity associated with a conditioned hand movement in the monkey, J. Neurophysiol., 29, 1011, 10.1152/jn.1966.29.6.1011 Evarts, 1968, Relation of pyramidal tract activity to force exerted during voluntary movement, J. Neurophysiol., 31, 14, 10.1152/jn.1968.31.1.14 Evarts, 1968, A technique for recording activity of subcortical neurons in moving animals, Electroencephalogr. Clin. Neurophysiol., 24, 83, 10.1016/0013-4694(68)90070-9 Carmena, 2005, Stable ensemble performance with single-neuron variability during reaching movements in primates, J. Neurosci., 25, 10712, 10.1523/JNEUROSCI.2772-05.2005 Wessberg, 2004, Optimizing a linear algorithm for real-time robotic control using chronic cortical ensemble recordings in monkeys, J. Cogn. Neurosci., 16, 1022, 10.1162/0898929041502652 Stein, 2005, Neuronal variability: noise or part of the signal?, Nat. Rev. Neurosci., 6, 389, 10.1038/nrn1668 Cohen, 2004, Reduction of single-neuron firing uncertainty by cortical ensembles during motor skill learning, J. Neurosci., 24, 3574, 10.1523/JNEUROSCI.5361-03.2004 Nicolelis, 2003, Brain–machine interfaces to restore motor function and probe neural circuits, Nat. Rev. Neurosci., 4, 417, 10.1038/nrn1105 Sanchez, 2004, Ascertaining the importance of neurons to develop better brain–machine interfaces, IEEE Trans. Biomed. Eng., 51, 943, 10.1109/TBME.2004.827061 Dodson, 1978, Cerebral tissue response to electrode implantation, Can. J. Neurol. Sci., 5, 443, 10.1017/S0317167100024240 Schultz, 1976, The ultrastructure of the sheath around chronically implanted electrodes in brain, J. Neurocytol., 5, 621, 10.1007/BF01181577 Polikov, 2005, Response of brain tissue to chronically implanted neural electrodes, J. Neurosci. Methods, 148, 1, 10.1016/j.jneumeth.2005.08.015 Tresco, 2000, Cellular transplants as sources for therapeutic agents, Adv. Drug Deliv. Rev., 42, 3, 10.1016/S0169-409X(00)00052-1 Berry, 1999 Landis, 1994, The early reactions of non-neuronal cells to brain injury, Annu. Rev. Neurosci., 17, 133, 10.1146/annurev.ne.17.030194.001025 Sandler, A.J. et al. (2005) Long-term neuronal recordings from nonhuman primates. In 2005 Abstract Viewer and Itinerary Planner, Program No. 402.8, Society for Neuroscience Online (http://sfn.scholarone.com/) Kennedy, 1989, The cone electrode: a long-term electrode that records from neurites grown onto its recording surface, J. Neurosci. Methods, 29, 181, 10.1016/0165-0270(89)90142-8 Kennedy, 1998, Restoration of neural output from a paralyzed patient by a direct brain connection, NeuroReport, 9, 1707, 10.1097/00001756-199806010-00007 Kennedy, 2000, Direct control of a computer from the human central nervous system, IEEE Trans. Rehabil. Eng., 8, 198, 10.1109/86.847815 Kennedy, 1992, The cone electrode: ultrastructural studies following long-term recording in rat and monkey cortex, Neurosci. Lett., 142, 89, 10.1016/0304-3940(92)90627-J Cui, 2001, Surface modification of neural recording electrodes with conducting polymer/biomolecule blends, J. Biomed. Mater. Res., 56, 261, 10.1002/1097-4636(200108)56:2<261::AID-JBM1094>3.0.CO;2-I Rahimi, 2001, Transplants of NGF-secreting fibroblasts restore stimulus-evoked activity in barrel cortex of basal-forebrain-lesioned rats, J. Neurophysiol., 86, 2081, 10.1152/jn.2001.86.4.2081 Ignatius, 1998, Bioactive surface coatings for nanoscale instruments: effects on CNS neurons, J. Biomed. Mater. Res., 40, 264, 10.1002/(SICI)1097-4636(199805)40:2<264::AID-JBM11>3.0.CO;2-M Kam, 2002, Selective adhesion of astrocytes to surfaces modified with immobilized peptides, Biomaterials, 23, 511, 10.1016/S0142-9612(01)00133-8 Cui, 2003, In vivo studies of polypyrrole/peptide coated neural probes, Biomaterials, 24, 777, 10.1016/S0142-9612(02)00415-5 Biran, 2003, Directed nerve outgrowth is enhanced by engineered glial substrates, Exp. Neurol., 184, 141, 10.1016/S0014-4886(03)00253-X Rousche, 1998, Chronic recording capability of the Utah intracortical electrode array in cat sensory cortex, J. Neurosci. Methods, 82, 1, 10.1016/S0165-0270(98)00031-4 Mohseni, 2005, Wireless multichannel biopotential recording using an integrated FM telemetry circuit, IEEE Trans. Neural Syst. Rehabil. Eng., 13, 263, 10.1109/TNSRE.2005.853625 Mackay, 1998 Knutti, 1979, An integrated circuit approach to totally implantable telemetry systems, Biotelem. Patient Monit., 6, 95 Claude, 1979, Applications of totally implantable telemetry systems to chronic medical research, Biotelem. Patient Monit., 6, 160 Chien, 2005, Miniature telemetry system for the recording of action and field potentials, J. Neurosci. Methods, 147, 68, 10.1016/j.jneumeth.2005.03.011 Bossetti, 2004, Transmission latencies in a telemetry-linked brain–machine interface, IEEE Trans. Biomed. Eng., 51, 919, 10.1109/TBME.2004.827090 Morizio, J. et al. (2005) Fifteen-channel wireless headstage system for single-unit rat recordings. In 2005 Abstract Viewer and Itinerary Planner, Program No. 68.4, Society for Neuroscience Online (http://sfn.scholarone.com/) Moxon, 2004, Ceramic-based multisite electrode arrays for chronic single-neuron recording, IEEE Trans. Biomed. Eng., 51, 647, 10.1109/TBME.2003.821037 Llinas, 2005, Neuro-vascular central nervous recording/stimulating system: using nanotechnology probes, J Nanopart. Res., 7, 111, 10.1007/s11051-005-3134-4 Georgopoulos, 1988, Primate motor cortex and free arm movements to visual targets in three-dimensional space. II. Coding of the direction of movement by a neuronal population, J. Neurosci., 8, 2928, 10.1523/JNEUROSCI.08-08-02928.1988 Georgopoulos, 1986, Neuronal population coding of movement direction, Science, 233, 1416, 10.1126/science.3749885 Ashe, 1994, Movement parameters and neural activity in motor cortex and area 5, Cereb. Cortex, 4, 590, 10.1093/cercor/4.6.590 Moran, 1999, Motor cortical representation of speed and direction during reaching, J. Neurophysiol., 82, 2676, 10.1152/jn.1999.82.5.2676 Averbeck, 2005, Parietal representation of hand velocity in a copy task, J. Neurophysiol., 93, 508, 10.1152/jn.00357.2004 Sergio, 1998, Changes in the temporal pattern of primary motor cortex activity in a directional isometric force versus limb movement task, J. Neurophysiol., 80, 1577, 10.1152/jn.1998.80.3.1577 Sergio, 2005, Motor cortex neural correlates of output kinematics and kinetics during isometric-force and arm-reaching tasks, J. Neurophysiol., 94, 2353, 10.1152/jn.00989.2004 Todorov, 2000, Direct cortical control of muscle activation in voluntary arm movements: a model, Nat. Neurosci., 3, 391, 10.1038/73964 Truccolo, 2005, A point process framework for relating neural spiking activity to spiking history, neural ensemble, and extrinsic covariate effects, J. Neurophysiol., 93, 1074, 10.1152/jn.00697.2004 Brown, 2004, Multiple neural spike train data analysis: state-of-the-art and future challenges, Nat. Neurosci., 7, 456, 10.1038/nn1228 Brockwell, 2004, Recursive Bayesian decoding of motor cortical signals by particle filtering, J. Neurophysiol., 91, 1899, 10.1152/jn.00438.2003 Hu, 2005, Feature detection in motor cortical spikes by principal component analysis, IEEE Trans. Neural Syst. Rehabil. Eng., 13, 256, 10.1109/TNSRE.2005.847389 Wu, 2004, Modeling and decoding motor cortical activity using a switching Kalman filter, IEEE Trans. Biomed. Eng., 51, 933, 10.1109/TBME.2004.826666 Kim, 2003, Divide-and-conquer approach for brain machine interfaces: nonlinear mixture of competitive linear models, Neural Netw., 16, 865, 10.1016/S0893-6080(03)00108-4 Kemere, 2004, Model-based neural decoding of reaching movements: a maximum likelihood approach, IEEE Trans. Biomed. Eng., 51, 925, 10.1109/TBME.2004.826675 Santucci, 2005, Frontal and parietal cortical ensembles predict single-trial muscle activity during reaching movements in primates, Eur. J. Neurosci., 22, 1529, 10.1111/j.1460-9568.2005.04320.x Degnan, 2002, Functional electrical stimulation in tetraplegic patients to restore hand function, J. Long Term Eff. Med. Implants, 12, 175 Peckham, 2005, Functional electrical stimulation for neuromuscular applications, Annu. Rev. Biomed. Eng., 7, 327, 10.1146/annurev.bioeng.6.040803.140103 Loeb, 2001, BION system for distributed neural prosthetic interfaces, Med. Eng. Phys., 23, 9, 10.1016/S1350-4533(01)00011-X Hatsopoulos, 2004, Decoding continuous and discrete motor behaviors using motor and premotor cortical ensembles, J. Neurophysiol., 92, 1165, 10.1152/jn.01245.2003 Rizzuto, 2005, Spatial selectivity in human ventrolateral prefrontal cortex, Nat. Neurosci., 8, 415, 10.1038/nn1424 Shenoy, 2003, Neural prosthetic control signals from plan activity, NeuroReport, 14, 591, 10.1097/00001756-200303240-00013 Kim, 2006, Continuous shared control stabilizes reach and grasping with brain–machine interfaces, IEEE Trans. Biomed. Eng., 53, 1164, 10.1109/TBME.2006.870235 Hoshi, 2004, Differential roles of neuronal activity in the supplementary and presupplementary motor areas: from information retrieval to motor planning and execution, J. Neurophysiol., 92, 3482, 10.1152/jn.00547.2004 Lu, 2005, Anticipatory activity in primary motor cortex codes memorized movement sequences, Neuron, 45, 967, 10.1016/j.neuron.2005.01.036 Olson, 2003, Brain representation of object-centered space in monkeys and humans, Annu. Rev. Neurosci., 26, 331, 10.1146/annurev.neuro.26.041002.131405 Batista, 1999, Reach plans in eye-centered coordinates, Science, 285, 257, 10.1126/science.285.5425.257 Battaglia-Mayer, 2000, Early coding of reaching in the parietooccipital cortex, J. Neurophysiol., 83, 2374, 10.1152/jn.2000.83.4.2374 Graziano, 1998, Spatial maps for the control of movement, Curr. Opin. Neurobiol., 8, 195, 10.1016/S0959-4388(98)80140-2 Cisek, 2002, Simultaneous encoding of multiple potential reach directions in dorsal premotor cortex, J. Neurophysiol., 87, 1149, 10.1152/jn.00443.2001 Lebedev, 2001, Tuning for the orientation of spatial attention in dorsal premotor cortex, Eur. J. Neurosci., 13, 1002, 10.1046/j.0953-816x.2001.01457.x Boussaoud, 1993, Effects of gaze on apparent visual responses of frontal cortex neurons, Exp. Brain Res., 93, 423, 10.1007/BF00229358 Ivry, 1996, The representation of temporal information in perception and motor control, Curr. Opin. Neurobiol., 6, 851, 10.1016/S0959-4388(96)80037-7 Leon, 2003, Representation of time by neurons in the posterior parietal cortex of the macaque, Neuron, 38, 317, 10.1016/S0896-6273(03)00185-5 Roux, 2003, Context-related representation of timing processes in monkey motor cortex, Eur. J. Neurosci., 18, 1011, 10.1046/j.1460-9568.2003.02792.x Matell, 2003, Interval timing and the encoding of signal duration by ensembles of cortical and striatal neurons, Behav. Neurosci., 117, 760, 10.1037/0735-7044.117.4.760 O’Doherty, J. et al. (2005) Ensemble representation of time: interhemispheric communication involved? In 2005 Abstract Viewer and Itinerary Planner, Program No. 402.5, Society for Neuroscience Online (http://sfn.scholarone.com/) Breuer, 2005, First observation of tool use in wild gorillas, PLoS Biol., 3, e380, 10.1371/journal.pbio.0030380 Head, 1911, Sensory disturbances from cerebral lesion, Brain, 34, 102, 10.1093/brain/34.2-3.102 Iriki, 1996, Coding of modified body schema during tool use by macaque postcentral neurones, NeuroReport, 7, 2325, 10.1097/00001756-199610020-00010 Maravita, 2003, Multisensory integration and the body schema: close to hand and within reach, Curr. Biol., 13, R531, 10.1016/S0960-9822(03)00449-4 Gurfinkel, V.S. et al. (1991) Body scheme concept and motor control. Body scheme in the postural automatisms regulation. In Intellectual Processes and Their Modelling, pp 24–53, Nauka Maruishi, 2004, Brain activation during manipulation of the myoelectric prosthetic hand: a functional magnetic resonance imaging study, NeuroImage, 21, 1604, 10.1016/j.neuroimage.2003.12.001 Roux, 2003, Cortical areas involved in virtual movement of phantom limbs: comparison with normal subjects, Neurosurgery, 53, 1342, 10.1227/01.NEU.0000093424.71086.8F Zacksenhouse, M. et al. (2005) Trends in firing rate statistics mirroring changes in test performance during training with brain machine interfaces. In 2005 Abstract Viewer and Itinerary Planner, Program No. 402.4, Society for Neuroscience Online (http://sfn.scholarone.com/) Todorov, 2002, Optimal feedback control as a theory of motor coordination, Nat. Neurosci., 5, 1226, 10.1038/nn963 Scott, 2004, Optimal feedback control and the neural basis of volitional motor control, Nat. Rev. Neurosci., 5, 532, 10.1038/nrn1427 Harris, 1998, Signal-dependent noise determines motor planning, Nature, 394, 780, 10.1038/29528 Cohen, 2004, What electrical microstimulation has revealed about the neural basis of cognition, Curr. Opin. Neurobiol., 14, 169, 10.1016/j.conb.2004.03.016 Romo, 2000, Sensing without touching: psychophysical performance based on cortical microstimulation, Neuron, 26, 273, 10.1016/S0896-6273(00)81156-3 Sandler, A. et al. (2004) Primate somatosensorimotor learning: examining cue-related, association-related and motor-related responses in several cortical areas. In 2004 Abstract Viewer and Itinerary Planner, Program No. 884.7, Society for Neuroscience Online (http://sfn.scholarone.com/) Fitzsimmons, N.A. et al. (2005) Long-term behavioral improvements in a reaching task cued by microstimulation of the primary somatosensory cortex. In 2005 Abstract Viewer and Itinerary Planner, Program No. 402.7, Society for Neuroscience Online (http://sfn.scholarone.com/)