Prospects for alkaline zero gap water electrolysers for hydrogen production
Tài liệu tham khảo
Tilak, 1981, Electrolytic production of hydrogen, vol. 2, 1
Wendt, 1988, Nine years of research and development on advanced water electrolysis – a review of the research-program of the commission-of-the-European-communities, J Appl Electrochem, 18, 1, 10.1007/BF01016198
Wendt, 1990
Pletcher, 1991
Plzak, 1994, vol. 26
McElroy, 1994, Recent advances in SPE water electrolyser, J Power Sources, 47, 369, 10.1016/0378-7753(94)87015-2
La Conti, 2003, Special applications using PEM-technology, vol. 3, 745
Grigoriev, 2006, Pure hydrogen production by PEM electrolysis for hydrogen energy, Int J Hydrogen Energy, 31, 171, 10.1016/j.ijhydene.2005.04.038
Hamann, 2007, Electrowinning of other inorganic compounds, vol. 5, 299
Zoulias, 2007, Hydrogen-based uninterruptible power supply, Int J Hydrogen Energy, 32, 1589, 10.1016/j.ijhydene.2006.10.036
Zeng, 2010, Recent progress in alkaline water electrolysis for hydrogen production and applications, Prog Energy Combust Sci, 36, 307, 10.1016/j.pecs.2009.11.002
Weissermel, 1978
Saur G. The Wind to Hydrogen Project: Electrolyzer Capital Cost Study, Report NREL/TP-550–44103; 2008.
Hydrogenics.com [Internet]. Canada: Hydrogenics Corporation Plc.; hydrogen generators: on site, on demand: HySTAT™ Electrolysers for safe and reliable hydrogen production; c2009–10. Available from: http://www.hydrogenics.com/hydro [updated 2009 May; cited 2011 Apr 9]
Teledynees.com [Internet]. Maryland (USA): Teledyne Energy Systems, Inc.; TELEDYNE TITAN™ Hydrogen/Oxygen Gas Generation Systems; c2009. Available from: http://www.teledynees.com/titan.asp [cited 2011 Apr 9].
Jörissen, 2006, Bifunctional oxygen/air electrodes, J Power Sources, 155, 23, 10.1016/j.jpowsour.2005.07.038
Pettersson, 2006, A review of the latest developments in electrodes for unitised regenerative polymer electrolyte fuel cells, J Power Sources, 157, 28, 10.1016/j.jpowsour.2006.01.059
1980, vol 1–8
2003, vol. 1–5
2003
Harrison KW, Martin GD, Ramsden TG, Kramer WE, Novachek FJ. The Wind to Hydrogen Project: Operational Experience, Performance Testing and Systems Integration, Report NREL/TP-550–44082; 2009.
Pletcher, 2009
Appleby, 1982, Hydrogen, vol. IXa, 383
Trasatti, 1992, Progress in cathode activation, vol. 2, 1
Breiter, 2003, The hydrogen oxidation/evolution reaction, vol. 2, 361
Couper, 1990, Electrode materials for electrosynthesis, Chem Rev, 90, 837, 10.1021/cr00103a010
Hoare, 1974, vol. II, 192
Kinoshita, 1992
L’Her, 2006, Redox properties, electrochemistry of oxygen, vol. 7a, 117
Nidola, 1986, Poisoning mechanisms and structural-analyses on metallic contaminated cathode catalysts in chloralkali membrane cell technology, J Electrochem Soc, 133, 1653, 10.1149/1.2108984
O’Brian, 2005, vol. 1
Bockris, 1971, The equivalent pressure of molecular hydrogen in cavities within metals in terms of the overpotential developed during the evolution of hydrogen, Electrochim Acta, 16, 2169, 10.1016/0013-4686(71)85027-2
Miles, 1976, Effect of temperature on electrode kinetic-parameters for hydrogen and oxygen evolution reactions on nickel electrodes in alkaline solutions, J Electrochem Soc, 123, 332, 10.1149/1.2132820
Appleby, 1978, High-efficiency water electrolysis in alkaline solution, Int J Hydrogen Energy, 3, 21, 10.1016/0360-3199(78)90054-X
Ferreira, 1988, The effect of temperature on the water electrolysis reactions on nickel and nickel-based codeposits, J Appl Electrochem, 18, 894, 10.1007/BF01016047
Cairns, 1986, Electrode coatings for membrane cells, vol. 3, 293
Groves, 1986, Precious-metal activated cathodes for chlor-alkali cells, vol. 3, 250
Cameron, 1990, Poison tolerant platinum catalysed cathodes for membrane cells, vol. 4, 95
Cairns, 1998, Advances in ICI’s activated cathode technology for chlor-alkali production, Proc Electrochem Soc, 98, 289
Trasatti, 1992, Hydrogen evolution on oxide electrodes, vol. 5, 281
Trasatti, 1999, Interfacial electrochemistry of conductive oxides for electrolysis, 769
Danna, 1983, Olin membrane cell technology, vol. 2, 121
Dworak, 1992, Lurgi’s experience with steel and Raney-nickel as cathode material, vol. 5, 257
Brown, 1983, The development of low overvoltage cathodes, vol. 2, 233
Brown, 1984, Preparation and characterisation of low overvoltage transition-metal alloy electrocatalysts for hydrogen evolution in alkaline solutions, Electrochim Acta, 29, 1551, 10.1016/0013-4686(84)85008-2
Bianchi, 2005, Electrocatalytic activation of Ni for H2 evolution by spontaneous deposition of Ru, Chem Phys, 319, 192, 10.1016/j.chemphys.2005.06.042
Vázquez-Gómez, 2008, Hydrogen evolution on porous Ni cathodes modified by spontaneous deposition of Ru or Ir, Electrochim Acta, 53, 8310, 10.1016/j.electacta.2008.06.056
Antozzi, 2008, EIS study of the service life of activated cathodes for the hydrogen evolution reaction in the chlor-alkali membrane cell process, Electrochim Acta, 53, 7410, 10.1016/j.electacta.2007.12.025
Kinoshita, 1988
Porbaix, 1966
Burke, 2005, Metastability and electrocatalytic activity of ruthenium dioxide cathodes used in water electrolysis cells, J Appl Electrochem, 35, 931, 10.1007/s10800-005-5290-8
Spãtaru, 1996, A study of RuO2 as an electrocatalyst for hydrogen evolution in alkaline solution, J Appl Electrochem, 26, 397, 10.1007/BF00251324
Beer, 1980, The invention and industrial-development of metal anodes, J Electrochem Soc, 127, C303, 10.1149/1.2130021
Iwakura, 1992, Electrochemical preparation and characterisation of Ni/(Ni + RuO2) composite coatings as an active cathode for hydrogen evolution, Electrochim Acta, 37, 757, 10.1016/0013-4686(92)80081-V
Iwakura, 1995, Electrochemical properties of Ni/(Ni + RuO2) active cathodes for hydrogen evolution in chloralkali electrolysis, Electrochim Acta, 40, 977, 10.1016/0013-4686(95)00006-Z
Tavares, 2000, Ni + RuO2 co-deposited electrodes for hydrogen evolution, Electrochim Acta, 45, 4195, 10.1016/S0013-4686(00)00546-6
Vázquez-Gómez, 2007, Preparation and electrochemical characterization of Ni + RuO2 composite cathodes of large effective area, Electrochim Acta, 52, 8055, 10.1016/j.electacta.2007.06.083
Vázquez-Gómez, 2009, Influence of deposition current density on the composition and properties of electrodeposited Ni + RuO2 and Ni + IrO2 composites, J Electroanal Chem, 634, 42, 10.1016/j.jelechem.2009.07.009
Tsou, 2001, Reinforced composite-reductively deposited catalytic coating for hydrogen evolution, J Electroanal Chem, 498, 223, 10.1016/S0022-0728(00)00425-3
Endoh, 1987, New Raney-nickel composite-coated electrode for hydrogen evolution, Int J Hydrogen Energy, 12, 473, 10.1016/0360-3199(87)90044-9
Divisek, 1980, Novel diaphragms and electrode designs for electrolysis of water and alkali chloride, Chem Ing Tech, 52, 465, 10.1002/cite.330520533
Rausch, 1996, Morphology and utilization of smooth hydrogen-evolving Raney nickel cathode coatings and porous sintered-nickel cathodes, J Electrochem Soc, 143, 2852, 10.1149/1.1837118
Tanaka, 2000, Effect of Ni–Al precursor alloy on the catalytic activity for a Raney-Ni cathode, J Electrochem Soc, 147, 2242, 10.1149/1.1393514
Yoshida, 1994, A new low hydrogen overvoltage cathode for chloralkali electrolysis cell, Electrochim Acta, 39, 1733, 10.1016/0013-4686(94)85158-1
Shervedani, 1998, Study of the hydrogen evolution reaction on Ni-Mo-P electrodes in alkaline solutions, J Electrochem Soc, 145, 2219, 10.1149/1.1838623
Han, 2010, A study on pulse plating amorphous Ni–Mo alloy coating used as HER cathode in alkaline medium, Int J Hydrogen Energy, 35, 5194, 10.1016/j.ijhydene.2010.03.093
Divisek, 1989, Ni and Mo coatings as hydrogen cathodes, J Appl Electrochem, 19, 519, 10.1007/BF01022108
Huot, 1991, Low hydrogen overpotential nanocrystalline Ni–Mo cathodes for alkaline water electrolysis, J Electrochem Soc, 138, 1316, 10.1149/1.2085778
Rodríguez-Valdez, 2004, Electrochemical performance of hydrogen evolution reaction of Ni–Mo electrodes obtained by mechanical alloying, Int J Hydrogen Energy, 29, 1141
Miousse, 1995, Hydrogen evolution on Ni–Al–Mo and Ni–Al electrodes prepared by low-pressure plasma spraying, J Appl Electrochem, 25, 592, 10.1007/BF00573217
Schiller, 1998, High performance electrodes for an advanced intermittently operated 10-kW alkaline water electrolyzer, Int J Hydrogen Energy, 23, 761, 10.1016/S0360-3199(97)00122-5
Birry, 2004, Studies of the hydrogen evolution reaction on Raney nickel-molybdenum electrodes, J Appl Electrochem, 34, 735, 10.1023/B:JACH.0000031161.26544.6a
Hu, 1997, A novel cathode for alkaline water electrolysis, Int J Hydrogen Energy, 22, 441, 10.1016/S0360-3199(96)00086-9
Hu, 2000, Electrocatalytic properties of new electrocatalysts for hydrogen evolution in alkaline water electrolysis, Int J Hydrogen Energy, 25, 111, 10.1016/S0360-3199(99)00024-5
Li X, Pletcher D. Unpublished work.
Hall, 1985, Alkaline water electrolysis anode materials, J Electrochem Soc, 132, C41, 10.1149/1.2113856
Miles, 1975, Evaluation of electrocatalysts for water electrolysis in alkaline solutions, J Electroanal Chem, 60, 89, 10.1016/S0022-0728(75)80205-1
Miles, 1978, The oxygen electrode reaction in alkaline solutions on oxide electrodes prepared by the thermal decomposition method, J Electrochem Soc, 125, 1931, 10.1149/1.2131330
Lu, 1978, Nickel-based alloys as electrocatalysts for oxygen evolution from alkaline solutions, J Electrochem Soc, 125, 265, 10.1149/1.2131426
Rasiyah, 1984, The role of the lower metal oxide/higher metal oxide couple in oxygen evolution reactions, J Electrochem Soc, 131, 803, 10.1149/1.2115703
Vukovic, 1987, Oxygen evolution reaction on thermally treated iridium oxide films, J Appl Electrochem, 17, 737, 10.1007/BF01007809
Rolewicz, 1988, Characterization of oxygen evolving DSA electrodes. 1. Ti/IrO2-Ta2O5 electrodes, Electrochim Acta, 33, 573, 10.1016/0013-4686(88)80180-4
Horowitz, 1983, Oxygen electrocatalysis on some oxide pyrochlores, J Electrochem Soc, 130, 1851, 10.1149/1.2120111
ten Kortenaar, 1995, Oxygen evolution and reduction on iridium oxide compounds, J Power Sources, 56, 51, 10.1016/0378-7753(95)80008-5
Carcia, 1980, Electrocatalysis on thin film metallic oxide electrodes with the delafossite structure, J Electrochem Soc, 127, 1974, 10.1149/1.2130047
Hall, 1981, Electrodes for alkaline water electrolysis, J Electrochem Soc, 128, 740, 10.1149/1.2127498
Hall, 1982, Porous nickel-coated steel anodes for alkaline water electrolysis: corrosion resistance, J Electrochem Soc, 129, 310, 10.1149/1.2123817
Hall, 1983, Ni(OH)2-impregnated anodes for alkaline water electrolysis, J Electrochem Soc, 130, 317, 10.1149/1.2119702
Corrigan, 1987, The catalysis of the oxygen evolution reaction by iron impurities in thin film nickel oxide electrodes, J Electrochem Soc, 134, 377, 10.1149/1.2100463
Miller, 1997, Electrochemical behaviour of reactively sputtered iron-doped nickel oxide, J Electrochem Soc, 144, 3072, 10.1149/1.1837961
Merrill, 2008, Metal oxide catalysts for the evolution of O2 from H2O, J Phys Chem C, 112, 3655, 10.1021/jp710675m
Kleiman-Shwarsctein, 2009, NiFe-oxide electrocatalysts for the oxygen evolution reaction on Ti doped hematite photoelectrodes, Electrochem Commun, 11, 1150, 10.1016/j.elecom.2009.03.034
Li, 2011, Nickel based electrocatalysts for oxygen evolution in high current density alkaline water electrolysers, Phys Chem Chem Phys, 13, 1162, 10.1039/C0CP00993H
Tarasevich, 1980, Properties of spinel-type oxide electrodes, 221
Tseung, 1977, Oxygen evolution on semiconducting oxides, Electrochim Acta, 22, 31, 10.1016/0013-4686(77)85049-4
Jasem, 1979, A potentiostatic pulse study of oxygen evolution on Teflon-bonded nickel-cobalt oxide electrodes, J Electrochem Soc, 126, 1353, 10.1149/1.2129276
Rasiyah, 1983, A mechanistic study of oxygen evolution on NiCo2O4, J Electrochem Soc, 130, 2384, 10.1149/1.2119592
Rasiyah, 1983, A mechanistic study of oxygen evolution on Li-doped Co3O4, J Electrochem Soc, 130, 365, 10.1149/1.2119712
Vandenborre, 1983, Developments on IME-alkaline water electrolysis, Int J Hydrogen Energy, 8, 81, 10.1016/0360-3199(83)90089-7
Bocca, 1999, Oxygen evolution on Co2O3 and Li-doped Co2O3 coated electrodes in an alkaline solution, Int J Hydrogen Energy, 24, 699, 10.1016/S0360-3199(98)00120-7
Singh, 2000, Sol–gel derived spinel MxCo3−xO4 (M = Ni, Cu; 0 < x < 1) films and oxygen evolution, Electrochim Acta, 45, 1911, 10.1016/S0013-4686(99)00413-2
Švegl, 2000, Characterization of spinel Co3O4 and Li-doped Co3O4 thin film electrocatalysts prepared by the sol–gel route, Electrochim Acta, 45, 4359, 10.1016/S0013-4686(00)00543-0
Rashkova, 2002, Vacuum evaporated thin films of mixed cobalt and nickel oxides as electrocatalyst for oxygen evolution and reduction, Electrochim Acta, 47, 1555, 10.1016/S0013-4686(01)00897-0
Hamdani, 2004, Physicochemical and electrocatalytic properties of Li-Co3O4 anodes prepared by chemical spray pyrolysis for application in alkaline water electrolysis, Electrochim Acta, 49, 1555, 10.1016/S0013-4686(03)00957-5
Yang, 2006, A novel preparation method for NiCo2O4 electrodes stacked with hexagonal nanosheets for water electrolysis, J Appl Electrochem, 36, 945, 10.1007/s10800-006-9160-9
Chi, 2008, Cations distribution of CuxCo3−xO4 and its electrocatalytic activities for oxygen evolution reaction, Int J Hydrogen Energy, 33, 4763, 10.1016/j.ijhydene.2008.05.032
Lee, 1996, Oxygen evolution on Co–Cu–Zn ternary spinel oxide-coated electrodes in alkaline solution, J Electrochem Soc, 143, 1218, 10.1149/1.1836620
Wen, 1998, Co–Ni–Cu ternary spinel oxide-coated electrodes for oxygen evolution in alkaline solution, Electrochim Acta, 43, 1729, 10.1016/S0013-4686(97)00313-7
Nikdov, 1997, Electrocatalytic activity of spine1 related cobaltites MxCo3−xO4 (M = Li, Ni, Cu) in the oxygen evolution reaction, J Electroanal Chem, 429, 157, 10.1016/S0022-0728(96)05013-9
Singh, 2006, New NiFe2−xCrxO4 spinel films for O2 evolution in alkaline solutions, Electrochim Acta, 51, 5515, 10.1016/j.electacta.2006.02.028
Tamura, 1980, Physicochemical and electrochemical properties of perovskite oxides, 261
Matsumoto, 1979, Oxygen evolution on SrFeO3 electrode, J Electroanal Chem, 102, 77, 10.1016/S0022-0728(79)80031-5
Matsumoto, 1979, Oxygen evolution on La1−xSrxMnO3 electrodes in alkaline solutions, Electrochim Acta, 24, 421, 10.1016/0013-4686(79)87030-9
Matsumoto, 1980, Anodic characteristics of SrFe0.9M0.1O3 (M:Ni, Co, Ti, Mn) electrodes, Electrochim Acta, 25, 539, 10.1016/0013-4686(80)87054-X
Matsumoto, 1980, Oxygen evolution on La1−xSrxCoO3 electrodes in alkaline solutions, J Electrochem Soc, 127, 811, 10.1149/1.2129762
Matsumoto, 1980, Oxygen evolution on La1−xSrxFe1−yCoyO3 series oxides, J Electrochem Soc, 127, 2360, 10.1149/1.2129415
Bockris, 1983, Mechanism of oxygen evolution on perovskites, J Phys Chem, 87, 2960, 10.1021/j100238a048
Bockris, 1984, The electrocatalysis of oxygen evolution on perovskites, J Electrochem Soc, 131, 290, 10.1149/1.2115565
Otagawa, 1982, . Lanthanum nickelates as electrocatalyst: oxygen evolution, J Electrochem Soc, 129, 2391, 10.1149/1.2123550
Tiwari, 1995, Preparation of perovskite-type oxides of cobalt by the malic acid aided process and their electrocatalytic surface properties in relation to oxygen evolution, J Electrochem Soc, 142, 148, 10.1149/1.2043854
Tiwari, 1996, Effect of Ni, Fe, Cu, and Cr substitutions for Co in La0.8Sr0.2CoO3 on electrocatalytic properties for oxygen evolution, J Electrochem Soc, 143, 1505, 10.1149/1.1836670
Singh, 1997, Electrocatalytic activity of high specific surface area perovskite-type LaNiO3 via sol–gel route for electrolytic oxygen evolution in alkaline solution, Int J Hydrogen Energy, 22, 557, 10.1016/S0360-3199(96)00176-0
Tiwari, 1998, Electrocatalysis of oxygen evolution/reduction on LaNiO3 prepared by a novel malic acid-aided method, J Appl Electrochem, 28, 114, 10.1023/A:1003214321780
Singh, 2002, High surface area lanthanum cobaltate and its A and B sites substituted derivatives for electrocatalysis of O2 evolution in alkaline solution, Int J Hydrogen Energy, 27, 45, 10.1016/S0360-3199(01)00078-7
Lal, 2005, Electrocatalytic properties of perovskite-type La1−xSrxCoO3 (0 ≤ x ≤ 0.4) obtained by a novel stearic acid sol–gel method for electrocatalysis of O2 evolution in KOH solutions, Int J Hydrogen Energy, 30, 723, 10.1016/j.ijhydene.2004.07.002
Ionicsmembranes.com [Internet]. Cambridge (UK): ionic membranes. Available from: http://www.ionicsmembranes.com/membranes [cited 2011 May 10].
ASTOM-corp.Jp [Internet]. Tokyo (Japan): ASTOM Corporation: Ion Exchange Membrane; c2004. Available from: http://www.astom-corp.jp/en/en-main2.html [updated 2008 Jul 10; cited 2011 May 10].
Fumatech.com [Internet]. St. Ingbert (Germany): FuMA-Tech GmbH; c2001. Available from: http://www.fumatech.com/EN [cited 2011 May 10].
Davis, 1997
2000
Strathmann, 2004
Varcoe, 2005, Prospects for alkaline anion-exchange membranes in low temperature fuel cells, Fuel Cells, 5, 187, 10.1002/fuce.200400045
Varcoe, 2009, Alkaline anion-exchange membranes for low-temperature fuel cell application, 322
Varcoe, 2006, An alkaline polymer electrochemical interface: a breakthrough in application of alkaline anion-exchange membranes in fuel cells, Chem Commun, 1428, 10.1039/b600838k
Varcoe, 2006, An electron-beam-grafted ETFE alkaline anion-exchange membrane in metal-cation-free solid-state alkaline fuel cells, Electrochem Commun, 8, 839, 10.1016/j.elecom.2006.03.027
Varcoe, 2007, Investigations into the ex situ methanol, ethanol and ethylene glycol permeabilities of alkaline polymer electrolyte membranes, J Power Sources, 173, 194, 10.1016/j.jpowsour.2007.04.068
Varcoe, 2007, Poly(ethylene-co-tetrafluoroethylene)-derived radiation-grafted anion-exchange membrane with properties specifically tailored for application in metal-cation-free alkaline polymer electrolyte fuel cells, Chem Mater, 19, 2686, 10.1021/cm062407u
Poynton, 2010, Novel electrolyte membranes and non-Pt catalysts for low temperature fuel cells, Solid State Ionics, 181, 219, 10.1016/j.ssi.2009.01.019
Park, 2008, Performance of solid alkaline fuel cells employing anion-exchange membranes, J Power Sources, 178, 620, 10.1016/j.jpowsour.2007.08.043
Lu, 2008, Alkaline polymer electrolyte fuel cells completely free from noble metal catalysts, Proc Natl Acad Sci U S A, 105, 20611, 10.1073/pnas.0810041106
Wang, 2009, Developing a polysulfone-based alkaline anion exchange membrane for improved ionic conductivity, J Membr Sci, 332, 63, 10.1016/j.memsci.2009.01.038
Pan, 2010, High-performance alkaline polymer electrolyte for fuel cell applications, Adv Funct Mater, 20, 312, 10.1002/adfm.200901314
Yan, 2010, Anion exchange membranes by bromination of benzylmethyl-containing poly(sulfone)s, Macromolecules, 43, 2349, 10.1021/ma902430y
Li, 2005, Quaternized polyethersulfone Cardo anion exchange membranes for direct methanol alkaline fuel cells, J Membr Sci, 262, 1, 10.1016/j.memsci.2005.07.009
Wang, 2009, Synthesis of soluble poly(arylene ether sulfone) ionomers with pendant quaternary ammonium groups for anion exchange membranes, Macromolecules, 42, 8711, 10.1021/ma901606z
Robertson, 2010, Tunable high performance cross-linked alkaline anion exchange membranes for fuel cell applications, J Am Chem Soc, 132, 3400, 10.1021/ja908638d
Hou, 2008, Alkali doped polybenzimidazole membrane for high performance alkaline direct ethanol fuel cell, J Power Sources, 182, 95, 10.1016/j.jpowsour.2008.04.010
Modestov, 2009, MEA for alkaline direct ethanol fuel cell with alkali doped PBI membrane and non-platinum electrodes, J Power Sources, 188, 502, 10.1016/j.jpowsour.2008.11.118
Xing, 2000, Hydrogen/oxygen polymer electrolyte membrane fuel cells (PEMFCs) based on alkaline-doped polybenzimidazole (PBI), Electrochem Commun, 2, 697, 10.1016/S1388-2481(00)00107-7
Savadogo, 2004, Emerging membranes for electrochemical systems: part II. High temperature composite membranes for polymer electrolyte fuel cell (PEFC) applications, J Power Sources, 127, 135, 10.1016/j.jpowsour.2003.09.043
Piana, 2010, H2/air alkaline membrane fuel cell performance and durability, using novel ionomer and non-platinum group metal cathode catalyst, J Power Sources, 195, 5875, 10.1016/j.jpowsour.2009.12.085
Yanagi, 2008, Anion exchange membrane and ionomer for alkaline membrane fuel cells (AMFCs), ECS Trans, 16, 257, 10.1149/1.2981860
Matsui, 2010, Influence of carbon dioxide on the performance of anion-exchange membrane fuel cells, ECS Trans, 25, 105, 10.1149/1.3315177
Yanagi H, Watanabe S, Sadasue K, Isomura T, Inoue H, Fukuta K. Improved performance of alkaline membrane fuel cell (AMFCs) based on newly developed electrolyte materials. Electrochem Soc Conference, Vienna. 2009 [abstract 341].
Fukuta K, Inoue H, Chikashige Y, Yanagi H. Improved maximum power density of alkaline membrane fuel cells (AMFCs) by the optimization of catalyst layer construction. Electrochem Soc Conference, Vancouver; 2010 [abstract 0275].
Asazawa, 2009, Study of anode catalysts and fuel concentration on direct hydrazine alkaline anion-exchange membrane fuel cells, J Electrochem Soc, 156, B509, 10.1149/1.3082129
Gottesfeld S. What really determines the rate of the ORR at metal catalysts in acid and alkaline solutions and how is the answer tied to B.E. Conway’s contributions. Electrochem Soc Conference, Vienna; 2009 [abstract 3014].
CellEra-Inc.com [Internet]. Israel: CellEra Inc.; c2007. Available from: www.cellera-inc.com/technology [updated 2010; cited 2011 May 10].
ITM-Power.com [Internet]. Sheffield (UK): ITM Power Plc. For Energy Storage and Clean Fuel Production c2004 [cited 2011 May 10]. Available from: www.itm-power.com.
Vandenborre, 1978, On inorganic-membrane-electrolyte water electrolysis, Electrochim Acta, 23, 803, 10.1016/0013-4686(78)80043-7
Vandenborre, 1984, A survey of five year intensive R&D work in Belgium on advanced alkaline water electrolysis, Int J Hydrogen Energy, 9, 277, 10.1016/0360-3199(84)90077-6
Vandenborre, 1985, Advanced alkaline water electrolysis using inorganic membrane electrolyte (I.M.E.) technology, Int J Hydrogen Energy, 11, 719, 10.1016/0360-3199(85)90107-7
Ganley, 2009, High temperature and pressure alkaline electrolysis, Int J Hydrogen Energy, 34, 3604, 10.1016/j.ijhydene.2009.02.083
Hauch, 2008, Highly efficient high temperature electrolysis, J Mater Chem, 18, 2331, 10.1039/b718822f
Boggs, 2009, Urea electrolysis: direct hydrogen production from urine, Chem Commun, 4859, 10.1039/b905974a
Nikolova, 2008, Electrocatalysts for bifunctional oxygen/air electrodes, J Power Sources, 185, 727, 10.1016/j.jpowsour.2008.08.031