Local dimension-free estimates for volumes of sublevel sets of analytic functions

Springer Science and Business Media LLC - Tập 133 - Trang 269-283 - 2003
F. Nazarov1, M. Sodin2, A. Volberg1
1Department of Mathematics, Michigan State University, East Lansing, USA
2School of Mathematical Sciences, Tel-Aviv University, Ramat-Aviv, Israel

Tóm tắt

We derive sufficiently sharp local dimension-free estimates for volumes of sublevel sets of analytic functions in the unit ball of ℂ n

Tài liệu tham khảo

[Bo] S. G. Bobkov,Remarks on the growth of L p norms of polynomials, Lecture Notes in Mathematics1745, Springer-Verlag, Berlin, 2000, pp. 27–35. [B] J. Bourgain,On the distribution of polynomials on high dimensional convex sets, Lecture Notes in Mathematics1469, Springer-Verlag, Berlin, 1991, pp. 127–137. [Br1] A. Brudnyi,Local inequalities for plurisubharmonic functions, Annals of Mathematics149 (1999), 511–533. [Br2] A. Brudnyi,On the local behavior of analytic functions, Journal of Functional Analysis169 (1999), 481–493. [BG] Yu. Brudnyi and M. Ganzburg,One extremal problem for polynomials of n variables, Izvestiya Akademii, Nauk SSSR (Mat.)37 (1973), 344–355 (Russian). [CW] A. Carbery and J. Wright,Distributional and L q norm inequalities for polynomials over convex bodies in ℝ n Mathematical Research Letters8 (2001), 233–248. [DR] R. M. Dudley and B. Randol,Implications of pointwise bounds on polynomials, Duke Mathematical Journal,29 (1962), 455–458. [GG] N. Garofalo and P. B. Garrett,A p -weight properties of real analytic functions in R n Proceedings of the American Mathematical Society96 (1986), 636–642. [GM1] M. Gromov and V. Milman,Brunn theorem and a concentration of volume phenomena for symmetric convex bodies, Israel Seminar on Geometrical Aspects of Functional Analysis (1983/84), Tel Aviv University, Tel Aviv, 1984. [GM2] M. Gromov and V. Milman,Generalization of the spherical isoperimetric inequality to uniformly convex Banach spaces, Compositio Mathematics62 (1987), 263–282. [KLS] R. Kannan, L. Lovász and M. Simonovits,Isoperimetric problem for convex bodies and a localization lemma, Discrete and Computational Geometry13 (1995), 541–559. [L] B. Ya. Levin,Lectures on entire functions, Translation of Mathematical Monographs, Vol. 150, American Mathematical Society, Providence, RI, 1996. [LS] L. Lovász and M. Simonovits,Random walks in a convex body and an improved volume algorithm, Random Structures and Algorithms4 (1993), 359–412. [N1] N. Nadirashvili,On a generalization of Hadamard’s three-circle theorem, Vestnik Moskovskogo Universiteta (Mat.)31, no. 3 (1976), 39–42 (Russian). [N2] N. Nadirashvili,Estimating solutions of elliptic equations with analytic coeffcients bounded on some sets Vestnik Moskovskogo Universiteta (Mat.)34, no. 2 (1979), 42–46 (Russian). [NSV] F. Nazarov, M. Sodin and A. Volberg,The geometric Kannan-Lovász-Simonovits lemma, dimension-free estimates for volumes of sublevel sets of polynomials, and distribution of zeroes of random analytic functions, Algebra & Analysis (St. Petersburg Mathematical Journal)14, no. 2 (2002), 214–234. [O] A. C. Offord,The distribution of zeros of power series whose coefficients are independent random variables, Indian Journal of Mathematics9 (1967), 175–196.