Emerging role of 18F-FDG PET/CT in Castleman disease: a review
Tóm tắt
Castleman disease (CD) describes a group of rare hematologic conditions involving lymphadenopathy with characteristic histopathology and a spectrum of clinical abnormalities. CD is divided into localized or unicentric CD (UCD) and multicentric CD (MCD) by imaging. MCD is further divided based on etiological driver into human herpesvirus-8-associated MCD, POEMS-associated MCD, and idiopathic MCD. There is notable heterogeneity across MCD, but increased level of pro-inflammatory cytokines, particularly interleukin-6, is an established disease driver in a portion of patients. FDG-PET/CT can help determine UCD versus MCD, evaluate for neoplastic conditions that can mimic MCD clinico-pathologically, and monitor therapy responses. CD requires more robust characterization, earlier diagnosis, and an accurate tool for both monitoring and treatment response evaluation; FDG-PET/CT is particularly suited for this. Moving forward, future prospective studies should further characterize the use of FDG-PET/CT in CD and specifically explore the utility of global disease assessment and dual time point imaging. Trial registration ClinicalTrials.gov, NCT02817997, Registered 29 June 2016,
https://clinicaltrials.gov/ct2/show/NCT02817997
Tài liệu tham khảo
Munshi N, Mehra M, van de Velde H, Desai A, Potluri R, Vermeulen J (2015) Use of a claims database to characterize and estimate the incidence rate for Castleman disease. Leuk Lymphoma 56:1252–1260
Cervantes CE, Correa R (2015) Castleman disease: a rare condition with endocrine manifestations. Cureus 7:e380
Bonekamp D, Horton KM, Hruban RH, Fishman EK (2011) Castleman disease: the great mimic. Radiographics 31:1793–1807
Fajgenbaum DC, Uldrick TS, Bagg A et al (2017) International, evidence-based consensus diagnostic criteria for HHV-8-negative/idiopathic multicentric Castleman disease. Blood 129:1646–1657
Jiang J-P, Shen X-F, Du J-F, Guan W-X (2018) A retrospective study of 34 patients with unicentric and multicentric Castleman’s disease: experience from a single institution. Oncol Lett 15:2407–2412
Yu JY, Oh IJ, Kim KS et al (2014) Castleman’s disease presenting as a tracheal mass. Ann Thorac Surg 97:1798–1800
Ye B, Gao S-G, Li W et al (2010) A retrospective study of unicentric and multicentric Castleman’s disease: a report of 52 patients. Med Oncol 27:1171–1178
Luo JM, Li S, Huang H et al (2015) Clinical spectrum of intrathoracic Castleman disease: a retrospective analysis of 48 cases in a single Chinese hospital. BMC Pulm Med 15:34
Kligerman SJ, Auerbach A, Franks TJ, Galvin JR (2016) Castleman disease of the thorax: clinical, radiologic, and pathologic correlation: from the radiologic pathology archives. Radiographics 36:1309–1332
Cronin DMP, Warnke RA (2009) Castleman disease: an update on classification and the spectrum of associated lesions. Adv Anat Pathol 16:236
Madan R, Chen JH, Trotman-Dickenson B, Jacobson F, Hunsaker A (2012) The spectrum of Castleman’s disease: Mimics, radiologic pathologic correlation and role of imaging in patient management. Eur J Radiol 81:123–131
Delaney SW, Zhou S, Maceri D (2015) Castleman’s disease presenting as a parotid mass in the pediatric population: a report of 2 cases. Case Rep Otolaryngol 2015:691701
Oksenhendler E, Boutboul D, Fajgenbaum D et al (2018) The full spectrum of Castleman disease: 273 patients studied over 20 years. Br J Haematol 180:206–216
Chen LYC, Mattman A, Seidman MA, Carruthers MN (2019) IgG4-related disease: what a hematologist needs to know. Haematologica 104:444–455
Fajgenbaum DC, van Rhee F, Nabel CS (2014) HHV-8-negative, idiopathic multicentric Castleman disease: novel insights into biology, pathogenesis, and therapy. Blood 123:2924–2933
Powles T, Stebbing J, Bazeos A et al (2009) The role of immune suppression and HHV-8 in the increasing incidence of HIV-associated multicentric Castleman’s disease. Ann Oncol 20:775–779
Zhang X, Rao H, Xu X et al (2018) Clinical characteristics and outcomes of Castleman disease: a multicenter study of 185 Chinese patients. Cancer Sci 109:199–206
Pria AD, Pinato D, Roe J, Naresh K, Nelson M, Bower M (2017) Relapse of HHV8-positive multicentric Castleman disease following rituximab-based therapy in HIV-positive patients. Blood 129:2143–2147
Gérard L, Michot J-M, Burcheri S et al (2012) Rituximab decreases the risk of lymphoma in patients with HIV-associated multicentric Castleman disease. Blood Am Soc Hematol 119:2228–2233
Yu L, Tu M, Cortes J et al (2017) Clinical and pathological characteristics of HIV- and HHV-8–negative Castleman disease. Blood 129:1658–1668
Sitenga J, Aird G, Ahmed A, Silberstein PT (2018) Impact of siltuximab on patient-related outcomes in multicentric Castleman’s disease. Patient Relat Outcome Meas 9:35–41
Suichi T, Misawa S, Sekiguchi Y et al (2020) Treatment response and prognosis of POEMS syndrome coexisting with Castleman disease. J Neurol Sci 413:116771
Szalat R, Munshi NC (2018) Diagnosis of Castleman disease. Hematol Oncol Clin North Am 32:53–64
Műzes G, Sipos F, Csomor J, Sréter L (2013) Multicentric Castleman’s disease: a challenging diagnosis. Pathol Oncol Res 19:345–351
Dispenzieri A (2019) POEMS syndrome: 2019 update on diagnosis, risk-stratification, and management. Am J Hematol 94:812–827
Li Z, Lan X, Li C et al (2019) Recurrent PDGFRB mutations in unicentric Castleman disease. Leukemia 33:1035–1038
van Rhee F, Stone K, Szmania S, Barlogie B, Singh Z (2010) Castleman disease in the 21st century: an update on diagnosis, assessment, and therapy. Clin Adv Hematol Oncol 8:486–498
Polizzotto MN, Uldrick TS, Wang V et al (2013) Human and viral interleukin-6 and other cytokines in Kaposi sarcoma herpesvirus-associated multicentric Castleman disease. Blood 122:4189–4198
Suthaus J, Stuhlmann-Laeisz C, Tompkins VS et al (2012) HHV-8-encoded viral IL-6 collaborates with mouse IL-6 in the development of multicentric Castleman disease in mice. Blood 119:5173–5181
Stebbing J, Pantanowitz L, Dayyani F, Sullivan RJ, Bower M, Dezube BJ (2008) HIV-associated multicentric Castleman’s disease. Am J Hematol 83:498–503
El-Osta HE, Kurzrock R (2011) Castleman’s disease: from basic mechanisms to molecular therapeutics. Oncologist 16:497–511
Zhao S, Wan Y, Huang Z, Song B, Yu J (2019) Imaging and clinical features of Castleman disease. Cancer Imaging 19:53
Waterston A, Bower M (2004) Fifty years of multicentric Castleman’s disease. Acta Oncol 43:698–704
Hill AJ, Tirumani SH, Rosenthal MH et al (2015) Multimodality imaging and clinical features in Castleman disease: single institute experience in 30 patients. Br J Radiol 88:20140670
Savelli G, Muni A, Falchi R, Giuffrida F (2015) Pre- and post-therapy 18F-FDG PET/CT of a patient affected by non-HIV multicentric IgG4-related Castleman disease. Blood Res 50:260–262
van Rhee F, Voorhees P, Dispenzieri A et al (2018) International, evidence-based consensus treatment guidelines for idiopathic multicentric Castleman disease. Blood 132:2115–2124
Kwon S, Lee KS, Ahn S, Song I, Kim TS (2013) Thoracic Castleman disease: computed tomography and clinical findings. J Comput Assist Tomogr 37:1–8
Lee ES, Paeng JC, Park CM et al (2013) Metabolic characteristics of castleman disease on 18F-FDG PET in relation to clinical implication. Clin Nucl Med 38:339–342
Barker R, Kazmi F, Stebbing J et al (2009) FDG-PET/CT imaging in the management of HIV-associated multicentric Castleman’s disease. Eur J Nucl Med Mol Imaging 36:648–652
Balamoutoff N, Serrano B, Hugonnet F, Garnier N, Paulmier B, Faraggi M (2018) Added value of a single fast 20-second deep-inspiration breath-hold acquisition in FDG PET/CT in the assessment of lung nodules. Radiology 286:260–270
Flavell RR, Behr SC, Mabray MC, Hernandez-Pampaloni M, Naeger DM (2016) Detecting pulmonary nodules in lung cancer patients using whole body FDG PET/CT, high-resolution lung reformat of FDG PET/CT, or diagnostic breath hold chest CT. Acad Radiol 23:1123–1129
Liu C, Alessio AM, Kinahan PE (2011) Respiratory motion correction for quantitative PET/CT using all detected events with internal-external motion correlation. Med Phys 38:2715–2723
Büther F, Jones J, Seifert R, Stegger L, Schleyer P, Schäfers M (2020) Clinical evaluation of a data-driven respiratory gating algorithm for whole-body PET with continuous bed motion. J Nucl Med 61:1520–1527
Kim JS, Lim ST, Jeong YJ, Kim DW, Jeong HJ, Sohn MH (2010) F-18 FDG PET/CT for the characterization of Castleman’s disease according to clinical subtype. J Nucl Med 51:1614–1614
Rassouli N, Obmann VC, Sandhaus LM, Herrmann KA (2018) (18F)-FDG-PET/MRI of unicentric retroperitoneal Castleman disease in a pediatric patient. Clin Imaging 50:175–180
Høilund-Carlsen PF, Edenbrandt L, Alavi A (2019) Global disease score (GDS) is the name of the game! Eur J Nucl Med Mol Imaging 46:1768–1772
Raynor WY, Borja AJ, Rojulpote C, Høilund-Carlsen PF, Alavi A. 18F-sodium fluoride: An emerging tracer to assess active vascular microcalcification. J Nucl Cardiol. 2020;
Boellaard R, Delgado-Bolton R, Oyen WJG et al (2015) FDG PET/CT: EANM procedure guidelines for tumour imaging: version 2.0. Eur J Nucl Med Mol Imaging 42:328–354
Graham MM, Wahl RL, Hoffman JM et al (2015) Summary of the UPICT protocol for 18F-FDG PET/CT imaging in oncology clinical trials. J Nucl Med 56:955–961
Ding Q, Zhang J, Yang L (2016) (18)F-FDG PET/CT in multicentric Castleman disease: a case report. Ann Transl Med 4:58
Fu Z, Zhang X, Fan Y, Di L, Zhang J, Wang RF (2013) Clinical value of 18F-FDG PET/CT in the management of Castleman’s disease. J Nucl Med 54:1560–1560
Murphy SP, Nathan MA, Karwal MW (1997) FDG-PET appearance of pelvic Castleman’s disease. J Nucl Med 38:1211–1212
Haap M, Wiefels J, Horger M, Hoyer A, Müssig K (2018) Clinical, laboratory and imaging findings in Castleman’s disease—the subtype decides. Blood Rev 32:225–234
Mohammed A, Janku F, Qi M, Kurzrock R (2015) Castleman’s disease and sarcoidosis, a rare association resulting in a “mixed” response: a case report. J Med Case Rep 9:45
Mohseni S, Shojaiefard A, Khorgami Z, Alinejad S, Ghorbani A, Ghafouri A (2014) Peripheral lymphadenopathy: approach and diagnostic tools. Iran J Med Sci 39:158–170
Wang W, Medeiros LJ (2019) Castleman Disease. Surg Pathol Clin 12:849–863
Barua A, Vachlas K, Milton R, Thorpe JAC (2014) Castleman’s disease- a diagnostic dilemma. J Cardiothorac Surg 9:170
Fajgenbaum DC, Langan R-A, Japp AS et al (2019) Identifying and targeting pathogenic PI3K/AKT/mTOR signaling in IL-6-blockade-refractory idiopathic multicentric Castleman disease. J Clin Invest 129:4451–4463
Elboga U, Narin Y, Urhan M, Sahin E (2012) FDG PET/CT appearance of multicentric Castleman’s disease mimicking lymphoma. Rev Esp Med Nucl Imagen Mol 31:142–144
Akosman C, Selcuk NA, Ordu C, Ercan S, Ekici ID, Oyan B (2011) Unicentric mixed variant Castleman disease associated with Hashimoto disease: the role of PET/CT in staging and evaluating response to the treatment. Cancer Imaging 11:52–55
Casper C (2005) The aetiology and management of Castleman disease at 50 years: translating pathophysiology to patient care. Br J Haematol 129:3–17
Ren N, Ding L, Jia E, Xue J (2018) Recurrence in unicentric castleman’s disease postoperatively: a case report and literature review. BMC Surg 18:1
van Rhee F, Greenway A, Stone K (2018) Treatment of idiopathic Castleman disease. Hematol Oncol Clin North Am 32:89–106
American Cancer Society. Castleman Disease [Internet]. 2018 [cited 2020 Mar 15]. Available from: https://www.cancer.org/cancer/castleman-disease.html
Pelosi E, Skanjeti A, Cistaro A, Arena V (2008) Fluorodeoxyglucose-positron emission tomography/computed tomography in the staging and evaluation of treatment response in a patient with Castleman’s disease: a case report. J Med Case Rep 2:99
Jain L, Mackenzie S, Bomanji JB et al (2018) 18F-Fluorodeoxyglucose positron emission tomography-computed tomography imaging in HIV-infected patients with lymphadenopathy, with or without fever and/or splenomegaly. Int J STD AIDS 29:691–694
Diéval C, Bonnet DF, Mauclère S et al (2007) Multicentric Castleman disease: Use of HHV8 viral load monitoring and positron emission tomography during follow-up. Leuk Lymphoma 48:1881–1883
Sanz-Viedma S, Torigian DA, Parsons M, Basu S, Alavi A (2009) Potential clinical utility of dual time point FDG-PET for distinguishing benign from malignant lesions: implications for oncological imaging. Rev Esp Med Nucl 28:159–166
Borja A, Aly M, Seraj SM et al (2020) Role of FDG in the management of metastatic hepatic tumors treated with chemoembolization. J Nucl Med Soc Nuclear Med 61:1181–1181
Cheng G, Torigian DA, Zhuang H, Alavi A (2013) When should we recommend use of dual time-point and delayed time-point imaging techniques in FDG PET? Eur J Nucl Med Mol Imaging 40:779–787
Kwee TC, Basu S, Saboury B, Ambrosini V, Torigian DA, Alavi A (2011) A new dimension of FDG-PET interpretation: assessment of tumor biology. Eur J Nucl Med Mol Imaging 38:1158–1170
Sarikaya I, Sarikaya A (2020) Assessing PET parameters in oncologic 18F-FDG studies. J Nucl Med Technol 48:278–282
Kang F, Han Q, Zhou X et al (2020) Performance of the PET vascular activity score (PETVAS) for qualitative and quantitative assessment of inflammatory activity in Takayasu’s arteritis patients. Eur J Nucl Med Mol Imaging 47:3107–3117
Bai B, Bading J, Conti PS (2013) Tumor quantification in clinical positron emission tomography. Theranostics 3:787
Aide N, Lasnon C, Veit-Haibach P, Sera T, Sattler B, Boellaard R (2017) EANM/EARL harmonization strategies in PET quantification: from daily practice to multicentre oncological studies. Eur J Nucl Med Mol Imaging 44:17–31
Davis JC, Daw NC, Navid F et al (2018) 18F-FDG uptake during early adjuvant chemotherapy predicts histologic response in pediatric and young adult patients with osteosarcoma. J Nucl Med 59:25–30
Im H-J, Zhang Y, Wu H et al (2018) Prognostic value of metabolic and volumetric parameters of FDG pet in pediatric osteosarcoma: a hypothesis-generating study. Radiology 287:303–312
Basu S, Zaidi H, Salavati A, Hess S, Høilund-Carlsen PF, Alavi A (2014) FDG PET/CT methodology for evaluation of treatment response in lymphoma: from “graded visual analysis” and “semiquantitative SUVmax” to global disease burden assessment. Eur J Nucl Med Mol Imaging 41:2158–2160
Taghvaei R, Zadeh MZ, Oestergaard B et al (2017) PET imaging in hematological malignancies. J Nucl Med 58:1008–1008
Raynor WY, Zadeh MZ, Kothekar E, Yellanki DP, Alavi A (2019) Evolving role of PET-based novel quantitative techniques in the management of hematological malignancies. PET Clin 14:331–340
Borja AJ, Hancin EC, Zhang V, Revheim M-E, Alavi A (2020) Potential of PET/CT in assessing dementias with emphasis on cerebrovascular disorders. Eur J Nucl Med Mol Imaging 47:2493–2498
Kothekar E, Yellanki D, Borja AJ et al (2020) 18F-FDG-PET/CT in measuring volume and global metabolic activity of thigh muscles: a novel CT-based tissue segmentation methodology. Nucl Med Commun 41:162–168
Borja AJ, Hancin EC, Dreyfuss AD et al (2020) 18F-FDG-PET/CT in the quantification of photon radiation therapy-induced vasculitis. Am J Nucl Med Mol Imaging 10:66–73
Sun L, Sun X, Li Y, Xing L (2015) The role of (18)F-FDG PET/CT imaging in patient with malignant PEComa treated with mTOR inhibitor. Onco Targets Ther 8:1967–1970
Graf N, Li Z, Herrmann K et al (2014) Positron emission tomographic monitoring of dual phosphatidylinositol-3-kinase and mTOR inhibition in anaplastic large cell lymphoma. Onco Targets Ther 7:789–798
Owonikoko TK (2015) Inhibitors of mTOR pathway for cancer therapy, moving on from rapalogs to TORKinibs. Cancer 121:3390–3392
Anwar H, Sachpekidis C, Schwarzbach M, Dimitrakopoulou-Strauss A (2017) Fluorine-18-FDG PET/CT in a patient with angiomyolipoma: response to mammalian target of rapamycin inhibitor therapy. Hell J Nucl Med 20:169–171