Suppression of Coronary Atherosclerosis by Helix B Surface Peptide, a Nonerythropoietic, Tissue-Protective Compound Derived from Erythropoietin

Molecular Medicine - Tập 19 - Trang 195-202 - 2013
Hiroto Ueba1, Masashi Shiomi2, Michael Brines3, Michael Yamin3, Tsutomu Kobayashi2, Junya Ako1, Shin-ichi Momomura1, Anthony Cerami3, Masanobu Kawakami1
1Department of Integrated Medicine 1, Saitama Medical Center, Jichi Medical University, Saitama City, Japan
2Institute for Experimental Animals, Kobe University Graduate School of Medicine, Kobe, Japan
3Araim Pharmaceuticals, Ossining, USA

Tóm tắt

Erythropoietin (EPO), a type I cytokine originally identified for its critical role in hematopoiesis, has been shown to have non-hematopoietic, tissue-protective effects, including suppression of atherosclerosis. However, prothrombotic effects of EPO hinder its potential clinical use in nonanemic patients. In the present study, we investigated the antiatherosclerotic effects of helix B surface peptide (HBSP), a nonerythropoietic, tissue-protective compound derived from EPO, by using human umbilical vein endothelial cells (HUVECs) and human monocytic THP-1 cells in vitro and Watanabe heritable hyperlipidemic spontaneous myocardial infarction (WHHLMI) rabbits in vivo. In HUVECs, HBSP inhibited apoptosis (≈70%) induced by C-reactive protein (CRP), a direct mediator of atherosclerosis. By using a small interfering RNA approach, Akt was shown to be a key molecule in HBSP-mediated prevention of apoptosis. HBSP also attenuated CRP-induced production of tumor necrosis factor (TNF)-α and matrix metalloproteinase-9 in THP-1 cells. In the WHHLMI rabbit, HBSP significantly suppressed progression of coronary atherosclerotic lesions as assessed by mean cross-sectional stenosis (HBSP 21.3 ± 2.2% versus control peptide 38.0 ± 2.7%) and inhibited coronary artery endothelial cell apoptosis with increased activation of Akt. Furthermore, TNF-α expression and the number of M1 macrophages and M1/M2 macrophage ratio in coronary atherosclerotic lesions were markedly reduced in HBSP-treated animals. In conclusion, these data demonstrate that HBSP suppresses coronary atherosclerosis, in part by inhibiting endothelial cell apoptosis through activation of Akt and in association with decreased TNF-α production and modified macrophage polarization in coronary atherosclerotic lesions. Because HBSP does not have the prothrombotic effects of EPO, our study may provide a novel therapeutic strategy that prevents progression of coronary artery disease.

Tài liệu tham khảo

Jelkmann W. (2007) Erythropoietin after a century of research: younger than ever. Eur. J. Haematol. 78:183–205. Brines M, Cerami A. (2008) Erythropoietin-mediated tissue protection: reducing collateral damage from the primary injury response. J. Intern. Med. 264:405–32. Buemi M, et al. (1998) Does erythropoietin administration affect progression of atherosclerosis in Watanabe heritable hyperlipaemic rabbits? Nephrol. Dial. Trans-plant. 13:2706–8. Pawlak K, Pawlak D, Mysliwiec M. (2006) Long-term erythropoietin therapy decreases CC-chemokine levels and intima-media thickness in hemodialyzed patients. Am. J. Nephrol. 26:497–502. Siamopoulos KC, et al. (2006) Long-term treatment with EPO increases serum levels of high-density lipoprotein in patients with CKD. Am. J. Kidney Dis. 48:242–9. Lu KY, et al. (2010) Erythropoietin suppresses the formation of macrophage foam cells: role of liver X receptor alpha. Circulation. 121:1828–37. Brines M, et al. (2004) Erythropoietin mediates tissue protection through an erythropoietin and common beta-subunit heteroreceptor. Proc. Natl. Acad. Sci. U. S. A. 101:14907–12. Khorana AA, Francis CW, Culakova E, Lyman GH. (2005) Risk factors for chemotherapy-associated venous thromboembolism in a prospective observational study. Cancer. 104:2822–9. Corwin HL, et al. (2007) Efficacy and safety of epoetin alfa in critically ill patients. N. Engl. J. Med. 357:965–76. Aapro M, Scherhag A, Burger HU. (2008) Effect of treatment with epoetin-beta on survival, tumour progression and thromboembolic events in patients with cancer: an updated meta-analysis of 12 randomised controlled studies including 2301 patients. Br. J. Cancer. 99:14–22. Brines M, et al. (2008) Nonerythropoietic, tissue-protective peptides derived from the tertiary structure of erythropoietin. Proc. Natl. Acad. Sci. U. S. A. 105:10925–30. Erbayraktar Z, Erbayraktar S, Yilmaz O, Cerami A, Coleman T, Brines M. (2009) Nonerythropoietic tissue protective compounds are highly effective facilitators of wound healing. Mol. Med. 15:235–41. Ueba H, et al. (2010) Cardioprotection by a non-erythropoietic, tissue-protective peptide mimicking the 3D structure of erythropoietin. Proc. Natl. Acad. Sci. U. S. A. 107:14357–62. Ahmet I, et al. (2011) A small nonerythropoietic helix B surface peptide based upon erythropoietin structure is cardioprotective against ischemic myocardial damage. Mol. Med. 17:194–200. Shiomi M, Ito T, Yamada S, Kawashima S, Fan J. (2003) Development of an animal model for spontaneous myocardial infarction (WHHLMI rabbit). Arterioscler. Thromb. Vasc. Biol. 23:1239–44. Nabata A, et al. (2008) C-reactive protein induces endothelial cell apoptosis and matrix metalloproteinase-9 production in human mononuclear cells: implications for the destabilization of atherosclerotic plaque. Atherosclerosis. 196:129–35. Ueba H, et al. (2005) Glimepiride induces nitric oxide production in human coronary artery endothelial cells via a PI3-kinase-Akt dependent pathway. Atherosclerosis. 183:35–9. Shiomi M, Ito T, Hirouchi Y, Enomoto M. (2001) Fibromuscular cap composition is important for the stability of established atherosclerotic plaques in mature WHHL rabbits treated with statins. Atherosclerosis 157:75–84. Khreiss T, Jozsef L, Potempa LA, Filep JG. (2004) Conformational rearrangement in C-reactive protein is required for proinflammatory actions on human endothelial cells. Circulation. 109:2016–22. Verma S, Szmitko PE, Ridker PM. (2005) C-reac-tive protein comes of age. Nat. Clin. Pract. Cardiovasc. Med. 2:29–36. Pepys MB, et al. (2006) Targeting C-reactive protein for the treatment of cardiovascular disease. Nature. 440:1217–21. Calvillo L, et al. (2003) Recombinant human erythropoietin protects the myocardium from ischemia-reperfusion injury and promotes beneficial remodeling. Proc. Natl. Acad. Sci. U. S. A. 100:4802–6. Fiordaliso F, et al. (2005) A nonerythropoietic derivative of erythropoietin protects the myocardium from ischemia-reperfusion injury. Proc. Natl. Acad. Sci. U. S. A. 102:2046–51. Salahudeen AK, et al. (2008) Antiapoptotic properties of erythropoiesis-stimulating proteins in models of cisplatin-induced acute kidney injury. Am. J. Physiol. Renal Physiol. 294:F1354–65. Agnello D, et al. (2002) Erythropoietin exerts an anti-inflammatory effect on the CNS in a model of experimental autoimmune encephalomyelitis. Brain Res. 952:128–34. Villa P, et al. (2003) Erythropoietin selectively attenuates cytokine production and inflammation in cerebral ischemia by targeting neuronal apoptosis. J. Exp. Med. 198:971–5. Valgimigli M, et al. (2003) Endothelial dysfunction in acute and chronic coronary syndromes: evidence for a pathogenetic role of oxidative stress. Arch. Biochem. Biophys. 420:255–61. McKellar GE, McCarey DW, Sattar N, McInnes IB. (2009) Role for TNF in atherosclerosis? Lessons from autoimmune disease. Nat. Rev. Cardiol. 6:410–7. de Nooijer R, et al. (2006) Lesional overexpression of matrix metalloproteinase-9 promotes intraplaque hemorrhage in advanced lesions but not at earlier stages of atherogenesis. Arterioscler. Thromb. Vasc. Biol. 26:340–6. Siren AL, et al. (2001) Erythropoietin prevents neuronal apoptosis after cerebral ischemia and metabolic stress. Proc. Natl. Acad. Sci. U. S. A. 98:4044–9. Bittorf T, Buchse T, Sasse T, Jaster R, Brock J. (2001) Activation of the transcription factor NF-kappaB by the erythropoietin receptor: structural requirements and biological significance. Cell Signal. 13:673–81. Parsa CJ, et al. (2003) A novel protective effect of erythropoietin in the infarcted heart. J. Clin. Invest. 112:999–1007. Watanabe Y, et al. (1988) Preventive effect of pravastatin sodium, a potent inhibitor of 3-hy-droxy-3-methylglutaryl coenzyme A reductase, on coronary atherosclerosis and xanthoma in WHHL rabbits. Biochim. Biophys. Acta. 960:294–302. Chinetti-Gbaguidi G, Staels B. (2011) Macrophage polarization in metabolic disorders: functions and regulation. Curr. Opin. Lipidol 22:365–72.