Lyapunov exponent of the random Schrödinger operator with short-range correlated noise potential
Tóm tắt
We study the influence of disorder on propagation of waves in one-dimensional structures. Transmission properties of the process governed by the Schrödinger equation with the white noise potential can be expressed through the Lyapunov exponent γ which we determine explicitly as a function of the noise intensity σ and the frequency ω. We find uniform two-parameter asymptotic expressions for γ which allow us to evaluate γ for different relations between σ and ω. The value of the Lyapunov exponent is also obtained in the case of a short-range correlated noise, which is shown to be less than its white noise counterpart.
Tài liệu tham khảo
P. Markoš and C. M. Soukoulis, Wave Propagation. From Electrons to Photonic Crystals and Left-Handed Materials (Princeton University Press, Princeton, 2008).
C. Ferrari, F. Morichetti, and A. Melloni, “Disorder in Coupled-Resonator Optical Waveguides,” J. Opt. Soc. Amer. B 26, 858–866 (2009).
D. P. Fussell, S. Hughes, and M. M. Dignam, “Influence of Fabrication Disorder on the Optical Properties of Coupled-Cavity Photonic Crystal Waveguides,” Phys. Rev. B 78, 144201 (2008).
J. Topolancik, B. Ilic, and F. Vollmer, “Experimental Observation of Strong Photon Localization in Disordered Photonic Crystal Waveguides,” Phys. Rev. Lett. 99, 253901 (2007).
S. Mookherjea, J. S. Park, S. H. Yang, and Bandaru, “Localization in Silicon Nanophotonic Slow-Light Waveguides,” Nature Photonics 2, 90–93 (2008).
A. Figotin and I. Vitebskiy, “Slow Light in Photonic Crystals,” Waves Random Complex Media 16, 293–382 (2006).
M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely Large Group-Velocity Dispersion of Line-Defect Waveguides in Photonic Crystal Slabs,” Phys. Rev. Lett. 87, 253902 (2001).
S. Molchanov and B. Vainberg, “Slowing down of the Wave Packets in Quantum Graphs,” Waves Random Complex Media 15, 101–112 (2005).
K. Y. Jung and F. L. Teixeira, “Photonic Crystals with a Degenerate Band Edge: Field Enhancement Effects and Sensitivity Analysis,” Phys. Rev. B 77, 125108 (2008).
K. Y. Jung and F. L. Teixeira, “Numerical study of Photonic Crystals with a Split Band Edge: Polarization Dependence and Sensitivity Analysis,” Phys. Rev. A 78, 043826 (2008).
C. Abraham, G. Biau, and B. Cadre, “On Lyapunov Exponent and Sensitivity,” J. Math. Anal. Appl. 290, 395–404 (2004).
B. Derrida and E. Gardner, “Lyapounov Exponent of the One Dimensional Anderson Model: Weak Disorder Expansions,” J. Physique 45, 1283–1295 (1984).
Y. A. Godin, S. Molchanov, and B. Vainberg, “The Effect of Disorder on the Wave Propagation in One-Dimensional Periodic Optical Systems,” Waves Random Complex Media 21, 135–150 (2011).
I. M. Lifshits, S. A. Gredescul, and L. A. Pastur, Introduction to the Theory of Disordered Systems (John Wiley, New York, 1988).
M. A. Pinsky and V. Wihstutz, “Lyapunov Exponents and Rotation Numbers of Linear System with Real Noise,” Probab. Theory, 109–119 (1992).
M. A. Pinsky, “Extremal Character of the Lyapunov Exponent of the Stochastic Harmonic Oscillator,” Ann. Appl. Probab. 2, 942–950 (1992).
M. Pinsky and V. Wihstutz, “Lyapunov Exponents for White and Real Noise Driven Two-Dimensional Systems,” in Mathematics of Random Media; W. Kohler and B. White, Eds., Amer. Math. Soc., Providence, RI, 201–213 (1991).
L. Pastur and A. Figotin, Spectra of Random and Almost-Periodic Operators (Springer-Verlag, New York, 1992).
R. Carmona and J. Lacroix, Spectral Theory of Random Schrödinger Operators (Birkhäuser, Boston, 1990).
L. Arnold, G. Papanicolaou, and V. Wihstutz, “Asymptotic Analysis of the Lyapunov Exponent and Rotation Number of the Random Oscillator and Applications,” SIAM J. Appl. Math. 46, 427–450 (1986).
M. A. Pinsky, “Instability of the Harmonic Oscillator with Small Noise,” SIAM J. Appl. Math. 46, 451–463 (1986).
M. A. Pinsky and V. Wihstutz, “Lyapunov Exponents of Nilpotent Itô systems,” Stochastics 22, 43–57 (1988).
M. V. Fedoryuk, Asymptotics, Integrals, and Series (Nauka, Moscow, 1987).