An efficient method for simulation of noisy coupled multi-dimensional oscillators

Journal of Computational Physics - Tập 321 - Trang 932-946 - 2016
Adam R. Stinchcombe1, Daniel B. Forger1
1Department of Mathematics, University of Michigan, 2074 East Hall, 530 Church Street, Ann Arbor, MI 48109-1043, United States

Tài liệu tham khảo

Komin, 2011, Synchronization and entrainment of coupled circadian oscillators, Interface Focus, 1, 167, 10.1098/rsfs.2010.0327 Ananthasubramaniam, 2014, Timing of neuropeptide coupling determines synchrony and entrainment in the mammalian circadian clock, PLoS Comput. Biol., 10, 10.1371/journal.pcbi.1003565 DeWoskin, 2014, It is not the parts, but how they interact that determines the behaviour of circadian rhythms across scales and organisms, Interface Focus, 4, 20130076, 10.1098/rsfs.2013.0076 Buzsáki, 2004, Neuronal oscillations in cortical networks, Science, 304, 1926, 10.1126/science.1099745 Peskin, 1975 Michaels, 1987, Mechanisms of sinoatrial pacemaker synchronization: a new hypothesis, Circ. Res., 61, 704, 10.1161/01.RES.61.5.704 Tinsley, 2012, Chimera and phase-cluster states in populations of coupled chemical oscillators, Nat. Phys., 8, 662, 10.1038/nphys2371 Strogatz, 2000, From Kuramoto to Crawford: exploring the onset of synchronization in populations of coupled oscillators, Phys. D, Nonlinear Phenom., 143, 1, 10.1016/S0167-2789(00)00094-4 Brown, 2004, On the phase reduction and response dynamics of neural oscillator populations, Neural Comput., 16, 673, 10.1162/089976604322860668 Ott, 2008, Low dimensional behavior of large systems of globally coupled oscillators, Chaos, Interdiscip. J. Nonlinear Sci., 18 Pazó, 2014, Low-dimensional dynamics of populations of pulse-coupled oscillators, Phys. Rev. X, 4 Nagai, 2010, Noise-induced synchronization of a large population of globally coupled nonidentical oscillators, Phys. Rev. E, 81, 10.1103/PhysRevE.81.065202 Knight, 1996, Dynamical models of interacting neuron populations in visual cortex Omurtag, 2000, On the simulation of large populations of neurons, J. Comput. Neurosci., 8, 51, 10.1023/A:1008964915724 Nykamp, 2000, A population density approach that facilitates large-scale modeling of neural networks: analysis and an application to orientation tuning, J. Comput. Neurosci., 8, 19, 10.1023/A:1008912914816 Sirovich, 2007, Populations of tightly coupled neurons: the RGC/LGN system, Neural Comput., 20, 1179, 10.1162/neco.2007.03-07-482 Ermentrout, 2010, vol. 35 Friedman, 2006, Linking stochastic dynamics to population distribution: an analytical framework of gene expression, Phys. Rev. Lett., 97, 10.1103/PhysRevLett.97.168302 Stinchcombe, 2012, Population density approach for discrete mRNA distributions in generalized switching models for stochastic gene expression, Phys. Rev. E, 85, 10.1103/PhysRevE.85.061919 Rinzel, 2002, Intercellular communication, vol. 20, 140 Risken, 1996, The Fokker–Planck Equation: Methods of Solution and Applications, 10.1007/978-3-642-61544-3 LeVeque, 2002, vol. 31 Chertock, 2010, On splitting-based numerical methods for convection–diffusion equations Badrot-Nico, 2007, A finite volume upwind scheme for the solution of the linear advection–diffusion equation with sharp gradients in multiple dimensions, Adv. Water Resour., 30, 2002, 10.1016/j.advwatres.2007.04.003 Liang, 2007, A fractional step ELLAM approach to high-dimensional convection–diffusion problems with forward particle tracking, J. Comput. Phys., 221, 198, 10.1016/j.jcp.2006.06.022 Greengard, 1985, The core spreading vortex method approximates the wrong equation, J. Comput. Phys., 61, 345, 10.1016/0021-9991(85)90091-9 Degond, 1989, The weighted particle method for convection–diffusion equations. Part 1: The case of an isotropic viscosity, Math. Comput., 53, 485 Degond, 1989, The weighted particle method for convection–diffusion equations. Part 2: The anisotropic case, Math. Comput., 53, 509 Eldredge, 2002, A general deterministic treatment of derivatives in particle methods, J. Comput. Phys., 180, 686, 10.1006/jcph.2002.7112 Cottet, 2000 Koumoutsakos, 2005, Multiscale flow simulations using particles, Annu. Rev. Fluid Mech., 37, 457, 10.1146/annurev.fluid.37.061903.175753 Mas-Gallic, 2002, The diffusion velocity method: a deterministic way of moving the nodes for solving diffusion equations, Transp. Theory Stat. Phys., 31, 595, 10.1081/TT-120015516 Degond, 1990, A deterministic approximation of diffusion equations using particles, SIAM J. Sci. Stat. Comput., 11, 293, 10.1137/0911018 Beaudoin, 2003, Simulation of anisotropic diffusion by means of a diffusion velocity method, J. Comput. Phys., 186, 122, 10.1016/S0021-9991(03)00024-X Mycek, 2014, Formulation and analysis of a diffusion-velocity particle model for transport-dispersion equations, Comput. Appl. Math., 1 Greengard, 1991, The fast Gauss transform, SIAM J. Sci. Stat. Comput., 12, 79, 10.1137/0912004 Yang, 2003, Improved fast Gauss transform and efficient kernel density estimation, 664 Morariu, 2008, Automatic online tuning for fast Gaussian summation Lee, 2005, Dual-tree fast Gauss transforms, 747 Gustafson, 1991, vol. 19 Li, 2002, Meshfree and particle methods and their applications, Appl. Mech. Rev., 55, 1, 10.1115/1.1431547 Vignjevic, 2009, Review of development of the smooth particle hydrodynamics (SPH) method, 367 Schrader, 2012, Choosing the best kernel: performance models for diffusion operators in particle methods, SIAM J. Sci. Comput., 34, A1607, 10.1137/110835815 Bergdorf, 2005, Multilevel adaptive particle methods for convection–diffusion equations, Multiscale Model. Simul., 4, 328, 10.1137/040602882 Li, 2007 Kempka, 1993 Reboux, 2012, A self-organizing Lagrangian particle method for adaptive-resolution advection–diffusion simulations, J. Comput. Phys., 231, 3623, 10.1016/j.jcp.2012.01.026 Har-Peled, 2012, Approximate nearest neighbor: towards removing the curse of dimensionality, Theory Comput., 8, 321, 10.4086/toc.2012.v008a014 Mattson, 1999, Near-neighbor calculations using a modified cell-linked list method, Comput. Phys. Commun., 119, 135, 10.1016/S0010-4655(98)00203-3 Verlet, 1967, Computer “experiments” on classical fluids. I. Thermodynamical properties of Lennard–Jones molecules, Phys. Rev., 159, 98, 10.1103/PhysRev.159.98 Forger, 2002, Reconciling mathematical models of biological clocks by averaging on approximate manifolds, SIAM J. Appl. Math., 62, 1281, 10.1137/S0036139900373587 Ginoux, 2012, Van der Pol and the history of relaxation oscillations: toward the emergence of a concept, chaos: an interdisciplinary, J. Nonlinear Sci., 22 Van der Pol, 1926, Lxxxviii. on “relaxation-oscillations”, Lond. Edinb. Dublin Philos. Mag. J. Sci., 2, 978, 10.1080/14786442608564127 Diekman, 2013, Causes and consequences of hyperexcitation in central clock neurons, PLoS Comput. Biol., 9, 10.1371/journal.pcbi.1003196 Kim, 2005, Fractal stochastic modeling of spiking activity in suprachiasmatic nucleus neurons, J. Comput. Neurosci., 19, 39, 10.1007/s10827-005-0149-x Fox, 1994, Emergent collective behavior in large numbers of globally coupled independently stochastic ion channels, Phys. Rev. E, 49, 3421, 10.1103/PhysRevE.49.3421 Bod'ová, 2014, Characterizing spiking in noisy type II neurons, J. Theor. Biol. Novak, 2008, Design principles of biochemical oscillators, Nat. Rev. Mol. Cell Biol., 9, 981, 10.1038/nrm2530 Kim, 2012, A mechanism for robust circadian timekeeping via stoichiometric balance, Mol. Syst. Biol., 8, 10.1038/msb.2012.62 Welsh, 2010, Suprachiasmatic nucleus: cell autonomy and network properties, Annu. Rev. Physiol., 72, 551, 10.1146/annurev-physiol-021909-135919 Gonze, 2006, Circadian rhythms and molecular noise, chaos: an interdisciplinary, J. Nonlinear Sci., 16 Aton, 2005, Vasoactive intestinal polypeptide mediates circadian rhythmicity and synchrony in mammalian clock neurons, Nat. Neurosci., 8, 476, 10.1038/nn1419 Wu, 2007, Mean-field coupling of calcium oscillations in a multicellular system of rat hepatocytes, Biophys. Chem., 125, 247, 10.1016/j.bpc.2006.08.004 Weber, 2012, Desynchronisation of glycolytic oscillations in yeast cell populations, PLoS ONE, 7, e43276, 10.1371/journal.pone.0043276 Goldbeter, 1991, A minimal cascade model for the mitotic oscillator involving cyclin and cdc2 kinase, Proc. Natl. Acad. Sci., 88, 9107, 10.1073/pnas.88.20.9107 Romond, 1994, The mitotic oscillator: temporal self-organization in a phosphorylation–dephosphorylation enzymatic cascade, Ber. Bunsenges. Phys. Chem., 98, 1152, 10.1002/bbpc.19940980917 MacDonald, 2006, Oscillations, intercellular coupling, and insulin secretion in pancreatic β cells, PLoS Biol., 4, 10.1371/journal.pbio.0040049