Determination of the Boron and Phosphorus Ionization Energies in Compensated Silicon by Temperature-Dependent Luminescence

Silicon - Tập 9 - Trang 147-151 - 2014
Chengquan Xiao1, Deren Yang1, Xuegong Yu1, Luelue Xiang1, Duanlin Que1
1State Key Laboratory of Silicon Materials and Department of Materials Science & Engineering, Zhejiang University, Hangzhou, People’s Republic of China

Tóm tắt

The determination of boron and phosphorus ionization energies in compensated silicon is very important for assessing the ionization level of dopants and their interaction with each other. In this paper, we achieved the boron and phosphorus ionization energies in compensated silicon by temperature-dependent luminescence for the first time. The results show that the boron and phosphorus ionization energies in heavily-compensated silicon have the same values as those in non-compensated silicon. This strongly suggests that both boron and phosphorus impurities with a concentration of ≤ 10 17 cm −3 should act as isolated acceptors and donors, but do not form complexes in silicon.

Tài liệu tham khảo

Delannoy Y, Alemany C, Li K I, Proulx P, Trassy C (2002) Plasma-refining process to provide solar-grade silicon. Sol Energy Mater Sol Cells 72: 69–75 Pires J C S, Otubo J, Braga A F B, Mei P R (2005) The purification of metallurgical grade silicon by electron beam melting. J Mater Process Technol 169: 16–20 Martinuzzi S, Perichaud I, Trassy C, Degoulange J (2009) N-type multicrystalline silicon wafers prepared from plasma torch refined upgraded metallurgical feedstock. Prog Photovolt Res Appl 17: 297–305 Morito H, Karahashi T, Uchikoshi M, Isshiki M, Yamane H (2012) Low-temperature purification of silicon by dissolution and solution growth in sodium solvent. Silicon 4: 121–125 Wu J J, Ma W H, Yang B, Liu D C, Dai Y N (2012) Calculation and characterization of silicon-boron phases in metallurgical grade silicon. Silicon 4: 289–295 Wu J J, Li Y L, Ma W H, Liu K, Wei K X, Xie K Q, Yang B, Dai YN (2013) Impurities removal from metallurgical grade silicon using gas blowing refining techniques. Silicon. http://dx.doi.org/10.1007/s12633-013-9158-y. Schutz-Kuchly T, Sanzone V, Veschetti Y (2013) N-type solar-grade silicon purified via the metallurgical route: characterisation and fabrication of solar cells. Prog Photovolt Res Appl 21: 1214–1221 Xiao C Q, Yang D R, Yu X G, Wang P, Chen P, Que D L (2012) Effect of dopant compensation on the performance of Czochralski silicon solar cells. Sol Energy Mater Sol Cells 101: 102–106 Tanay F, Dubois S, Enjalbert N, Veirman J (2011) Low temperature-coefficient for solar cells processed from solar-grade silicon purified by metallurgical route. Prog Photovolt Res Appl 19: 966–972 Soøiland A, Odden JO, Sandberg B, Friestad K, Håkedal J, Enebakk E, Braathen S (2012) Solar silicon from a metallurgical route by Elkem Solar – a viable alternative to virgin polysilicon. In: Proceedings of the 6th international workshop on crystalline silicon solar cells. Aix-les-bains, France Flamant G, Kurtcuoglu V, Murray J, Steinfeld A (2006) Purification of metallurgical grade silicon by a solar process. Sol Energy Mater Sol Cells 90: 2099–2106 Braga A F B, Moreira S P, Zampieri P R, Bacchin J M G, Mei P R (2007) New processes for the production of solar-grade polycrystalline silicon: a review. Sol Energy Mater Sol Cells 92: 418–424 Veirman J, Dubois S, Enjalbert N, Garandet J P, Lemiti M (2011) Electrical properties of highly-doped and compensated solar-grade silicon wafers and solar cells. J Appl Phys 109(103711) Xiao C Q, Yang D R, Yu X G, Gu X, Que D L (2012) Influence of the compensation level on the performance of p-type crystalline silicon solar cells theoretical calculations and experimental study. Sol Energy Mater Sol Cells 107: 263–271 Forster M, Cuevas A, Fourmond E, Rougieux F E, Lemiti M (2012) Impact of incomplete ionization of dopants on the electrical properties of compensated p-type silicon. J Appl Phys 111: 043701 Altermatt P P, Schenk A, Heiser G (2006) A simulation model for the density of states and for incomplete ionization in crystalline silicon. I. Establishing the model in Si:P. J Appl Phys 100: 113714 Altermatt P P, Schenk A, Schmithusen B, Heiser G (2006) A simulation model for the density of states and for incomplete ionization in crystalline silicon. II. Investigation of Si:As and Si:B and usage in device simulation. J Appl Phys 100: 113715 Tajima M, Iwai T, Toyota H, Binetti S, Macdonald D (2010) Fine structure due to donor–acceptor pair luminescence in compensated Si. Appl Phys Express 3: 071301 Tajima M, Iwai T, Toyota H, Binetti S, Macdonald D (2011) Donor-acceptor pair luminescence in compensated Si for solar cells. J Appl Phys 110: 043506 Enck R C, Honig A (1969) Radiative Spectra from shallow donor-acceptor electron transfer in silicon. Phys Rev 177: 1182–1193 Xiang L L, Li D S, Jin L, Pivac B, Yang D R (2012) The origin of 0.78 eV line of the dislocation related luminescene in silicon. J Appl Phys 112: 063528 Sauer R, Weber J, Stolz J, Weber E R, Kusters K H, Alexander H (1985) Dislocation-related photoluminescence in silicon. Appl Phys A Mater Sci Process 36: 1–13 Modanese C, Acciarri M, Binetti S, Søiland A, Sabatino MD, Arnberg L (2012) Temperature-dependent Hall-effect measurements of p-type multicrystalline compensated solar grade silicon. Prog Photovolt Res Appl. http://dx.doi.org/10.1002/pip.2223. Rezgui B D, Veirman J, Dubois S, Palais O (2012) Study of donor-acceptor pair luminescence in highly doped and compensated Cz silicon. Phys Status Solidi A 209: 1917–1920 Sze SM (1981) Physics of semicondutor devices, 2nd edn Riklund R, Chao K A (1982) Concentration-fluctuation model of a doped semiconductor in the nonmetallic regime: Pseudocluster investigation. Phys Rev B 26: 2168–2180