Characterization of novel lectins from Burkholderia pseudomallei and Chromobacterium violaceum with seven-bladed β-propeller fold

International Journal of Biological Macromolecules - Tập 152 - Trang 1113-1124 - 2020
Petra Sýkorová1,2, Jitka Novotná2,3, Gabriel Demo2,3, Guillaume Pompidor4, Eva Dubská2, Jan Komárek2,3, Eva Fujdiarová2,3, Josef Houser2,3, Lucia Hároníková1, Annabelle Varrot5, Nadezhda Shilova6, Anne Imberty5, Nicolai Bovin6, Martina Pokorná2,3, Michaela Wimmerová1,2,3
1Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
2Central European Institute of Technology, Masaryk University, Brno, Czech Republic
3National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic
4EMBL Hamburg c/o DESY, Hamburg, Germany
5CERMAV, CNRS Université de Grenoble Alpes, Grenoble, France
6Shemyakin‐Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences Moscow Russian Federation

Tài liệu tham khảo

Medina-Pascual, 2012, Identification, molecular characterisation and antimicrobial susceptibility of genomovars of the Burkholderia cepacia complex in Spain, Eur. J. Clin. Microbiol. Infect. Dis., 31, 3385, 10.1007/s10096-012-1707-6 Peeters, 2013, Burkholderia pseudomultivorans sp. nov., a novel Burkholderia cepacia complex species from human respiratory samples and the rhizosphere, Syst. Appl. Microbiol., 36, 483, 10.1016/j.syapm.2013.06.003 Spilker, 2015, Burkholderia stagnalis sp. nov. and Burkholderia territorii sp. nov., two novel Burkholderia cepacia complex species from environmental and human sources, Int. J. Syst. Evol. Microbiol., 65, 2265, 10.1099/ijs.0.000251 Sousa, 2011, Burkholderia cepacia Complex: Emerging Multihost Pathogens Equipped with a Wide Range of Virulence Factors and Determinants, Int. J. Microbiol., 2011, 1, 10.1155/2011/607575 Wiersinga, 2012, Melioidosis, N. Engl. J. Med., 367, 1035, 10.1056/NEJMra1204699 White, 2003, Melioidosis, Lancet Lond. Engl., 361, 1715, 10.1016/S0140-6736(03)13374-0 Choh, 2013, Burkholderia vaccines: are we moving forward?, Front. Cell. Infect. Microbiol., 3, 10.3389/fcimb.2013.00005 Galyov, 2010, Molecular Insights into Burkholderia pseudomallei and Burkholderia mallei Pathogenesis, Annu. Rev. Microbiol., 64, 495, 10.1146/annurev.micro.112408.134030 Gilad, 2007, Burkholderia mallei and Burkholderia pseudomallei as bioterrorism agents: national aspects of emergency preparedness, Isr. Med. Assoc. J. IMAJ., 9, 499 Whitlock, 2007, Glanders: off to the races with Burkholderia mallei, FEMS Microbiol. Lett., 277, 115, 10.1111/j.1574-6968.2007.00949.x Yang, 2011, Chromobacterium violaceum infection: A clinical review of an important but neglected infection, J. Chin. Med. Assoc., 74, 435, 10.1016/j.jcma.2011.08.013 National, 2003, Genome Project Consortium., The complete genome sequence of Chromobacterium violaceum reveals remarkable and exploitable bacterial adaptability, Proc. Natl. Acad. Sci., 100, 11660, 10.1073/pnas.1832124100 Salanoubat, 2002, Genome sequence of the plant pathogen Ralstonia solanacearum, Nature, 415, 497, 10.1038/415497a Stephens, 2004, Microbial genomics: tropical treasure?, Curr. Biol. CB., 14, R65, 10.1016/j.cub.2003.12.046 Lis, 1998, Lectins: Carbohydrate-Specific Proteins That Mediate Cellular Recognition, Chem. Rev., 98, 637, 10.1021/cr940413g Zinger-Yosovich, 2006, Production and properties of the native Chromobacterium violaceum fucose-binding lectin (CV-IIL) compared to homologous lectins of Pseudomonas aeruginosa (PA-IIL) and Ralstonia solanacearum (RS-IIL), Microbiology, 152, 457, 10.1099/mic.0.28500-0 Pokorná, 2006, Unusual Entropy-Driven Affinity of Chromobacterium violaceum Lectin CV-IIL toward Fucose and Mannose †, ‡, Biochemistry, 45, 7501, 10.1021/bi060214e Imberty, 2004, Structures of the lectins from Pseudomonas aeruginosa: insight into the molecular basis for host glycan recognition, Microbes Infect., 6, 221, 10.1016/j.micinf.2003.10.016 Sudakevitz, 2004, A new Ralstonia solanacearum high-affinity mannose-binding lectin RS-IIL structurally resembling the Pseudomonas aeruginosa fucose-specific lectin PA-IIL: Ralstonia solanacearum lectin RS-IIL, Mol. Microbiol., 52, 691, 10.1111/j.1365-2958.2004.04020.x Bonnardel, 2019, Architecture and evolution of blade assembly in β-propeller lectins, Structure, 27, 764, 10.1016/j.str.2019.02.002 Cioci, 2006, β-Propeller Crystal Structure of Psathyrella velutina Lectin: An Integrin-like Fungal Protein Interacting with Monosaccharides and Calcium, J. Mol. Biol., 357, 1575, 10.1016/j.jmb.2006.01.066 Ren, 2015, Structural basis of specific recognition of non-reducing terminal N-acetylglucosamine by an Agrocybe aegerita lectin, Plos One, 10, 10.1371/journal.pone.0129608 Wimmerova, 2003, Crystal structure of fungal lectin: six-bladed beta-propeller fold and novel fucose recognition mode for Aleuria aurantia lectin, J. Biol. Chem., 278, 27059, 10.1074/jbc.M302642200 Houser, 2013, A soluble fucose-specific lectin from Aspergillus fumigatus conidia–structure, specificity and possible role in fungal pathogenicity, PloS One, 8, 10.1371/journal.pone.0083077 Kerr, 2016, FleA expression in aspergillus fumigatus is recognized by fucosylated structures on mucins and macrophages to prevent lung infection, PLOS Pathog., 12, 10.1371/journal.ppat.1005555 Richard, 2018, Human bronchial epithelial cells inhibit Aspergillus fumigatus Germination of extracellular conidia via FleA recognition, Sci. Rep., 8, 10.1038/s41598-018-33902-0 Kostlánová, 2005, The Fucose-binding Lectin from Ralstonia solanacearum: a new type of β-propeller architecture formed by oligomerization and interacting with fucoside, fucosyllactose, and plant xyloglucan, J. Biol. Chem., 280, 27839, 10.1074/jbc.M505184200 Audfray, 2012, Fucose-binding Lectin from Opportunistic Pathogen Burkholderia ambifaria Binds to Both Plant and Human Oligosaccharidic Epitopes, J. Biol. Chem., 287, 4335, 10.1074/jbc.M111.314831 Jančaříková, 2017, Characterization of novel bangle lectin from Photorhabdus asymbiotica with dual sugar-binding specificity and its effect on host immunity, PLOS Pathog., 13, 10.1371/journal.ppat.1006564 Kumar, 2016, A Novel Fucose-binding Lectin from Photorhabdus luminescens (PLL) with an Unusual Heptabladed β-Propeller Tetrameric Structure, J. Biol. Chem., 291, 25032, 10.1074/jbc.M115.693473 Goyard, 2018, Multivalent Glycomimetics with Affinity and Selectivity toward Fucose-Binding Receptors from Emerging Pathogens, Bioconjug. Chem., 29, 83, 10.1021/acs.bioconjchem.7b00616 Jančaříková, 2018, Synthesis of α- l -Fucopyranoside-Presenting Glycoclusters and Investigation of Their Interaction with Photorhabdus asymbiotica Lectin (PHL), Chem. - Eur. J., 24, 4055, 10.1002/chem.201705853 Machida, 2017, Dynamic Cooperative Glycan Assembly Blocks the Binding of Bacterial Lectins to Epithelial Cells, Angew. Chem. Int. Ed., 56, 6762, 10.1002/anie.201700813 Knirel, 2014, Human tandem-repeat-type galectins bind bacterial non-βGal polysaccharides, Glycoconj. J., 31, 7, 10.1007/s10719-013-9497-3 Girard, 2003, A new class of lanthanide complexes to obtain high-phasing-power heavy-atom derivatives for macromolecular crystallography, Acta Crystallogr. D Biol. Crystallogr., 59, 1914, 10.1107/S0907444903020511 W. Kabsch, XDS, Acta Crystallogr. D Biol. Crystallogr. 66 (2010) 125–132. Winn, 2011, Overview of the CCP 4 suite and current developments, Acta Crystallogr. D Biol. Crystallogr., 67, 235, 10.1107/S0907444910045749 Pape, 2004, HKL2MAP : a graphical user interface for macromolecular phasing with SHELX programs, J. Appl. Crystallogr., 37, 843, 10.1107/S0021889804018047 Langer, 2008, Automated macromolecular model building for X-ray crystallography using ARP/wARP version 7, Nat. Protoc., 3, 1171, 10.1038/nprot.2008.91 Panjikar, 2009, On the combination of molecular replacement and single-wavelength anomalous diffraction phasing for automated structure determination, Acta Crystallogr. D Biol. Crystallogr., 65, 1089, 10.1107/S0907444909029643 Vagin, 2010, Molecular replacement with MOLREP, Acta Crystallogr. D Biol. Crystallogr., 66, 22, 10.1107/S0907444909042589 Vagin, 2004, REFMAC 5 dictionary: organization of prior chemical knowledge and guidelines for its use, Acta Crystallogr. D Biol. Crystallogr., 60, 2184, 10.1107/S0907444904023510 Emsley, 2010, Features and development of Coot, Acta Crystallogr. D Biol. Crystallogr., 66, 486, 10.1107/S0907444910007493 Laskowski, 1993, PROCHECK: a program to check the stereochemical quality of protein structures, J. Appl. Crystallogr., 26, 283, 10.1107/S0021889892009944 Chen, 2010, MolProbity : all-atom structure validation for macromolecular crystallography, Acta Crystallogr. D Biol. Crystallogr., 66, 12, 10.1107/S0907444909042073 Schuck, 2000, Size-Distribution Analysis of Macromolecules by Sedimentation Velocity Ultracentrifugation and Lamm Equation Modeling, Biophys. J., 78, 1606, 10.1016/S0006-3495(00)76713-0 Schuck, 2003, On the analysis of protein self-association by sedimentation velocity analytical ultracentrifugation, Anal. Biochem., 320, 104, 10.1016/S0003-2697(03)00289-6 R. Abagyan, M. Totrov, D. Kuznetsov, ICM-A new method for protein modeling and design: applications to. J. Comp. Chem. 15 (1994) 488–506] R. Abagyan, ICM user manual. https://www.molsoft.com/, 2017 (accessed 1 July 2019) Némethy, 1992, Energy parameters in polypeptides. X. Improved geometrical parameters and nonbonded interactions for use in the ECEPP/3 algorithm, with application to proline-containing peptides, J Phys Chem, 96, 6472, 10.1021/j100194a068 T.A. Halgren, Merck molecular force field. I. Basis, form, scope, parameterization, and performance of MMFF94. J. Comp. Chem. 17 (1996) 490–519 Totrov, 1997, Flexible protein-ligand docking by global energy optimization in internal coordinates, Proteins, 29, 215, 10.1002/(SICI)1097-0134(1997)1+<215::AID-PROT29>3.0.CO;2-Q Abagyan, 1994, Biased probability Monte Carlo conformational searches and electrostatic calculations for peptides and proteins, J Mol Biol, 235, 983, 10.1006/jmbi.1994.1052 Pérez, 2015, Glyco3D : A portal for structural glycosciences, Meth. Mol. Biol., 1273, 241, 10.1007/978-1-4939-2343-4_18 Woods Group. (2005-2014) GLYCAM Web. Complex Carbohydrate Research Center, University of Georgia, Athens, GA. http://www.glycam.com (accessed 1 July 2019). Dam, 2015, Probing Lectin-Mucin Interactions by Isothermal Titration Microcalorimetry, 75 Holm, 2010, Dali server: conservation mapping in 3D, Nucleic Acids Res., 38, W545, 10.1093/nar/gkq366 G. Yang, A.J. Dowling, U. Gerike, R.H. ffrench-Constant, N.R. Waterfield, Photorhabdus virulence cassettes confer injectable insecticidal activity against the wax moth, J. Bacteriol. 188 (2006) 2254–2261. Krissinel, 2007, Inference of macromolecular assemblies from crystalline state, J. Mol. Biol., 372, 774, 10.1016/j.jmb.2007.05.022 Šulák, 2011, Burkholderia cenocepacia BC2L-C Is a Super Lectin with Dual Specificity and Proinflammatory Activity, PLoS Pathog., 7, 10.1371/journal.ppat.1002238 Lameignere, 2008, Structural basis for mannose recognition by a lectin from opportunistic bacteria Burkholderia cenocepacia, Biochem. J., 411, 307, 10.1042/BJ20071276 Cecioni, 2015, Glycomimetics versus Multivalent Glycoconjugates for the Design of High Affinity Lectin Ligands, Chem. Rev., 115, 525, 10.1021/cr500303t Druzhinina, 1999, Activity of enzymes catalyzing formation of beta-L-fucosyl phosphate and GDP-beta-L-fucose in amphibian tissues and their application in chemo-enzymic synthesis of GDP-beta-L-fucose, Biochem. Biokhimiia., 64, 783 A. Varki (Ed.), Essentials of glycobiology, third ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 2017.