Induction of Tumor Immunity by Removing CD25+CD4+ T Cells: A Common Basis Between Tumor Immunity and Autoimmunity

Journal of Immunology - Tập 163 Số 10 - Trang 5211-5218 - 1999
Jun Shimizu1, Sayuri Yamazaki2, Shimon Sakaguchi1,2
1*Department of Immunopathology, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan; and
2Department of Experimental Pathology, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan

Tóm tắt

Abstract

This study shows that removal of a T cell subpopulation can evoke effective tumor immunity in otherwise nonresponding animals. Elimination of CD25-expressing T cells, which constitute 5–10% of peripheral CD4+ T cells in normal naive mice, elicited potent immune responses to syngeneic tumors in vivo and eradicated them. The responses were mediated by tumor-specific CD8+ CTLs and tumor-nonspecific CD4−8− cytotoxic cells akin to NK cells. Furthermore, in vitro culture of CD25+4+ T cell-depleted splenic cell suspensions prepared from tumor-unsensitized normal mice led to spontaneous generation of similar CD4−8− cytotoxic cells capable of killing a broad spectrum of tumors; reconstitution of CD25+4+ T cells inhibited the generation. In this culture, self-reactive CD25−4+ T cells responding to self peptides/class II MHC complexes on APCs spontaneously proliferated upon removal of CD25+4+ T cells, secreting large amounts of IL-2. The IL-2 thus produced appeared to be responsible for the generation of CD4−8− NK cells as lymphokine-activated killer cells, because direct addition of an equivalent amount of IL-2 to the culture of CD4−8− cells generated similar lymphokine-activated killer/NK cells, whereas coculture of normal CD4−8− cells with CD25−4+ T cells from IL-2-deficient mice did not. Thus, removal of immunoregulatory CD25+4+ T cells can abrogate immunological unresponsiveness to syngeneic tumors in vivo and in vitro, leading to spontaneous development of tumor-specific effector cells as well as tumor-nonspecific ones. This novel way of evoking tumor immunity would help to devise effective immunotherapy for cancer in humans.

Từ khóa


Tài liệu tham khảo

Boon, T., J.-C. Cerottini, B. Van den Eynde, P. van der Bruggen, A. Van Pel. 1994. Tumor antigens recognized by T lymphocytes. Annu. Rev. Immunol. 12: 337

Houghton, A.. 1994. Cancer antigens: immune recognition of self and altered self. J. Exp. Med. 180: 1

Rosenberg, S. A., D. E. White. 1996. Vitiligo in patients with melanoma: normal tissue antigens can be targets for cancer immunotherapy. J. Immunother. 19: 81

Hara, I., Y. Takechi, A. N. Houghton. 1995. Implicating a role for immune recognition of self in tumor rejection: passive immunization against the Brown locus protein. J. Exp. Med. 182: 1609

Morgan, D. J., H. T. V. Kreuwel, S. Fleck, H. I. Levitsky, D. M. Pardoll, L. A. Sherman. 1998. Activation of low avidity CTL specific for a self epitope results in tumor rejection but not autoimmunity. J. Immunol. 160: 643

Fowell, D., A. J. McKnight, F. Powrie, R. Dyke, D. Mason. 1991. Subsets of CD4+ T cells and their roles in the induction and prevention of autoimmunity. Immunol. Rev. 123: 37

Sakaguchi, S., N. Sakaguchi. 1994. Thymus, T cells and autoimmunity: various causes but a common mechanism of autoimmune disease. A. Coutinho, and M. Kazatchkine, eds. Autoimmunity: Physiology and Disease 203 Wiley-Liss, New York.

Sakaguchi, S., K. Fukuma, K. Kuribayashi, T. Masuda. 1985. Organ-specific autoimmune diseases induced in mice by elimination of T-cell subset. I. Evidence for the active participation of T cells in natural self-tolerance: deficit of a T-cell subset as a possible cause of autoimmune disease. J. Exp. Med. 161: 72

Sugihara, S., Y. Izumi, T. Yoshioka, H. Yagi, T. Tsujimura, O. Tarutani, Y. Kohno, S. Murakami, T. Hamaoka, H. Fujiwara. 1988. Autoimmune thyroiditis induced in mice depleted of particular T-cell subset. I. Requirement of Lyt-1dull L3T4bright normal T cells for the induction of thyroiditis. J. Immunol. 141: 105

Smith, H., Y.-H. Lou, P. Lacy, K. S. K. Tung. 1992. Tolerance mechanism in experimental ovarian and gastric autoimmune disease. J. Immunol. 149: 2212

Powrie, F., D. Mason. 1990. OX-22high CD4+ T cells induce wasting disease with multiple organ pathology: prevention by OX-22low subset. J. Exp. Med. 172: 1701

McKeever, U., J. P. Mordes, D. L. Greiner, M. C. Appel, J. Rozing, E. S. Handler, A. A. Rossini. 1990. Adoptive transfer of autoimmune diabetes and thyroiditis to athymic rats. Proc. Natl. Acad. Sci. USA 87: 7618

Sakaguchi, S., N. Sakaguchi, M. Asano, M. Itoh, M. Toda. 1995. Immunologic tolerance maintained by activated T cells expressing IL-2 receptor α-chains (CD25): breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J. Immunol. 155: 1151

Asano, M., M. Toda, N. Sakaguchi, S. Sakaguchi. 1996. Autoimmune disease as a consequence of developmental abnormality of a T cell subpopulation. J. Exp. Med. 184: 387

Suri-Payer, E., A. Z. Amar, A. M. Thornton, E. M. Shevach. 1998. CD4+ CD25+ T cells inhibit both the induction and effector function of autoreactive T cells and represent a unique lineage of immunoregulatory cells. J. Immunol. 160: 1212

Takahashi, T., Y. Kuniyasu, M. Toda, N. Sakaguchi, M. Itoh, M. Iwata, J. Shimizu, S. Sakaguchi. 1998. Immunologic self-tolerance maintained by CD25+ CD4+ naturally anergic and suppressive T cells; induction of autoimmune disease by breaking their anergic/suppressive state. Int. Immunol. 10: 1169

Itoh, M., T. Takahashi, N. Sakaguchi, Y. Kuniyasu, J. Shimizu, F. Otsuka, S. Sakaguchi. 1999. Thymus and autoimmunity: production of CD25+ CD4+ anergic and suppressive T cells as a key function of the thymus in maintaining immunologic self-tolerance. J. Immunol. 162: 5309

Sakaguchi, S., M. Toda, M. Asano, M. Itoh, S. S. Morse, N. Sakaguchi. 1996. T-cell mediated maintenance of self-tolerance and its breakdown as a possible cause of various autoimmune diseases. J. Autoimmun. 9: 211

Sakaguchi, S., T. Takahashi, and J. Shimizu. 1999. Breaking immunologic tolerance to tumor cells as a novel immunotherapy for cancer. In Cell Therapy. Y. Ikeda, ed. Springer-Verlag Tokyo, Tokyo. In press.

Waldmann, T. A.. 1991. The interleukin-2 receptor. J. Biol. Chem. 266: 2681

Uchiyama, T., S. Broder, T. A. Waldmann. 1981. A monoclonal antibody (anti-Tac) reactive with activated and functionally mature human T cells. I. Production of anti-Tac monoclonal antibody and distribution of Tac+ cells. J. Immunol. 126: 1393

Jackson, A. L., H. Matsumoto, M. Janszen, V. Maino, A. Blidy, S. Sheye. 1990. Restricted expression of p55 interleukin 2 receptor (CD25) on human T cells. Clin. Immunol. Immunopathol. 54: 126

Kanegane, H., T. Miyawaki, K. Kato, T. Yokoi, T. Uehara, A. Yachie, N. Taniguchi. 1991. A novel subpopulation of CD45RA+ CD4+ T cells expressing IL-2 receptor α-chain (CD25) and having a functionally transient nature into memory cells. Int. Immunol. 3: 1349

Dalton, D. K., S. Pitts-Meek, S. Keshav, I. S. Figari, A. Bradley, T. A. Stewart. 1993. Multiple defects of immune cell function in mice with disrupted interferon-γ genes. Science 259: 1739

Noben-Trauth, N., P. Kropf, I. Muller. 1996. Susceptibility to Leishmania major infection in interleukin-4-deficient mice. Science 271: 987

Schorle, H., T. Holtschke, T. Hunig, A. Schimpl, I. Horak. 1991. Development and function of T cells in mice rendered interleukin-2 deficient by gene targeting. Nature 352: 621

Sendo, F., T. Aoki, E. A. Boyse, C. K. Buafo. 1975. Natural occurrence of lymphocytes showing cytotoxic activity to BALB/c radiation-induced leukemia RL male 1 cells. J. Natl. Cancer Inst. 55: 603

Nakayama, E., H. Shiku, T. Takahashi, H. F. Oettgen, L. J. Old. 1979. Definition of a unique cell surface antigen of mouse leukemia RL♂1 by cell-mediated cytotoxicity. Proc. Natl. Acad. Sci. USA 76: 3486

Kuribayashi, K., A. Keyaki, S. Sakaguchi, T. Masuda. 1985. Effector mechanisms of syngeneic anti-tumor responses in mice. Immunology 56: 127

Uenaka, A., T. Ono, T. Akisawa, H. Wada, T. Yasuda, E. Nakayama. 1994. Identification of a unique antigen peptide pRL1 on BALB/c RL♂1 leukemia recognized by cytotoxic T lymphocytes and its relation to the akt oncogene. J. Exp. Med. 180: 1599

Bloom, M. B., D. Perry-Lalley, P. F. Robbins, L. Young, M. El-Gamil, S. A. Rosenberg, J. C. Young. 1997. Identification of tyrosinase-related protein 2 as a tumor rejection antigen for the B16 melanoma. J. Exp. Med. 185: 453

Yoshioka, T., H. Fujiwara, Y. Takai, M. Ogata, J. Shimizu, T. Hamaoka. 1987. The role of tumor-specific Lyt-1+2− T cells in eradicating tumor cells in vivo. II. Lyt-1+2− T cells have potential to reject antigenically irrelevant (bystander) tumor cells on activation with the specific target tumor cells. Cancer Immunol. Immunother. 24: 8

Ortega-R., G., R. J. Robb, E. M. Shevach, T. R. Malek. 1984. The murine IL-2 receptor. I. Monoclonal antibodies that define distinct functional epitopes on activated T cells and react with activated B cells. J. Immunol. 133: 1970

Ceredig, R., J. W. Lowenthal, M. Nabholz, R. H. MacDonald. 1985. Expression of interleukin-2 receptors as a differentiation marker on intrathymic stem cells. Nature 314: 98

Gillis, S., M. M. Ferm, W. Ou, K. A. Smith. 1978. T cell growth factor: parameters of production and a quantitative microassay for activity. J. Immunol. 120: 2027

Hsieh, C. S., S. E. Macatonia, A. O’Garra, K. M. Murphy. 1995. T cell genetic background determines default T helper phenotype development in vitro. J. Exp. Med. 181: 713

Mosier, D, K. L. E., R. J. Stell, B. E. Gulizia, B. E. Torbett, G. L. Gilmore. 1993. Homozygous scid/scid;beige/beige mice have low levels of spontaneous or neonatal T cell-induced B cell generation. J. Exp. Med. 177: 191

Koyasu, S.. 1994. CD3+ CD16+ NK1.1+ B220+ large granular lymphocytes arise from both α-βTCR+ CD4− CD8− and γ-δTCR+ CD4− CD8− cells. J. Exp. Med. 179: 1957

Trinchieri, G.. 1989. Biology of natural killer cells. Adv. Immunol. 47: 187

Rosenberg, S. A., M. T. Lotze. 1986. Cancer immunotherapy using interleukin-2 and interleukin-2-activated lymphocytes. Annu. Rev. Immunol. 4: 681

Yang, J. C., J. J. Mule, S. A. Rosenberg. 1986. Murine lymphokine-activated killer (LAK) cells: phenotypic characterization of the precursor and effector cells. J. Immunol. 137: 715

Phillips, J. H., L. L. Lanier. 1986. Dissection of the lymphokine-activated killer phenomenon. J. Exp. Med. 164: 814

Fujimoto, S., M. I. Greene, A. H. Sehon. 1976. Regulation of the immune response to tumor antigen. I. Immunosuppressor cells in tumor-bearing hosts. J. Immunol. 116: 791

North, R. J.. 1982. Cyclophosphamide-facilitated adoptive immunotherapy of an established tumor depends on elimination of tumor-induced suppressor T cells. J. Exp. Med. 55: 1063

Greenberg, P. D.. 1991. Adoptive T cell therapy of tumors: mechanisms operative in the recognition and elimination of tumor cells. Adv. Immunol. 49: 281

Awwad, M., R. J. North. 1988. Immunologically mediated regression of a murine lymphoma after treatment with anti-L3T4 antibody: a consequence of removing L3T4+ suppressor T cells from a host generating predominantly Lyt-2+ T cell-mediated immunity. J. Exp. Med. 168: 2193

Glimcher, L. H., D. L. Longo, I. Green, R. H. Schwartz. 1981. Murine syngeneic mixed lymphocyte response. I. Target antigens are self Ia molecules. J. Exp. Med. 154: 1652

Lattime, E. C., S. Gillis, G. Pecoraro, O. Stutman. 1982. Ia-dependent interleukin 2 production in syngeneic cellular interactions. J. Immunol. 128: 480

Grimm, E. A., A. Mazumder, H. Z. Zhang, S. A. Rosenberg. 1982. Lymphokine-activated killer cell phenomenon: lysis of natural killer-resistant fresh solid tumor cells by interleukin 2-activated autologous human peripheral blood lymphocytes. J. Exp. Med. 155: 1823

Sakaguchi, S., N. Sakaguchi. 1989. Organ-specific autoimmune diseases induced in mice by elimination of T-cell subset. V. Neonatal administration of cyclosporin A causes autoimmune disease. J. Immunol. 142: 471

Sakaguchi, S., E. H. Ermak, M. Toda, L. J. Berg, W. Ho, B. Fazekas de St. Groth, P. A. Peterson, N. Sakaguchi, M. M. Davis. 1994. Induction of autoimmune disease in mice by germline alteration of the T cell receptor gene expression. J. Immunol. 152: 1471

Sakaguchi, N., K. Miyai, S. Sakaguchi. 1994. Ionizing radiation and autoimmunity: induction of autoimmune disease in mice by high dose fractionated total lymphoid irradiation and its prevention by inoculating normal T cells. J. Immunol. 152: 2586

Morse, S. S., N. Sakaguchi, S. Sakaguchi. 1999. Virus and autoimmunity: induction of autoimmune disease in mice by mouse T-lymphotropic virus (MTLV) destroying CD4+ T cells. J. Immunol. 162: 5309

Shevach, E. M.. 1998. Organ-specific autoimmunity. W. E. Paul, ed. Fundamental Immunology 4th ed.1089 Lippincott-Raven, Philadelphia.

Rosenberg, S. A., P. Spiess, R. Lafreniere. 1986. A new approach to the adoptive immunotherapy of cancer with tumor-infiltrating lymphocytes. Science 233: 1318

Young, J. W., K. Inaba. 1996. Dendritic cells as adjuvants for class I major histocompatibility complex-restricted antitumor immunity. J. Exp. Med. 183: 7

Pardoll, D. M.. 1998. Cancer vaccines. Nat. Med. 4: 525