Three-dimensional numerical modeling of a rocket engine with solid fuel

Acta Astronautica - Tập 181 - Trang 544-551 - 2021
A.G. Kushnirenko1, L.I. Stamov1,2,3, V.V. Tyurenkova1,2,3, M.N. Smirnova1,2,3, E.V. Mikhalchenko1,2,3
1Federal Science Center «Scientific Research Institute for System Analysis of Russian Academy of Sciences», 36-1 Nakhimovskiy pr., Moscow, 117218, Russia
2Moscow M.V. Lomonosov State University, GSP-1, Leninskie Gory, Moscow, 119991, Russia
3Moscow Center for Fundamental and Applied Mathematics, Moscow, 119991, Russia

Tài liệu tham khảo

Chiaverini, 2001, Regression-rate and heat-transfer correlations for hybrid rocket combustion, J. Propul. Power, 17, 99, 10.2514/2.5714 Marksman, 1967, Fundamentals of the theory of combustion in the boundary layer of solid combustible hybrid fuel, Heterogen. Combust., 313 Arkhipov, 2016, Combustion of solid fuels blown by a high-speed gas flow (review), Phys. Combust. Explos., 52, 3 Sutton, 2001 Kustov, 1970, On the effect of chemical kinetics on the rate of combustion of a fuel plate in a turbulent flow of an oxidizer, Phys. Combust. Explos., 6, 54 Karabeyoglu, 2002, Combustion of liquefying hybrid propellants: Part 1. General theory, J. Propul. Power, 18 Karabeyoglu, 2004, Scale-up tests of high regression rate paraffinbased hybrid rocket fuels, J. Propul. Power, 20, 1037, 10.2514/1.3340 Greatrix, 2009, Regression rate estimation for standard-flow hybrid rocket engines, Aero. Sci. Technol., 13, 358, 10.1016/j.ast.2009.07.003 Fanton, 2012, Testing and modeling fuel regression rate in a miniature hybrid burner, Intern. J. Aerospace Eng., 15 Barato, 2016, Integrated approach for hybrid rocket technology development, Acta Astronaut., 128, 257, 10.1016/j.actaastro.2016.07.023 Cai, 2017, Transient analysis on ignition process of catalytic hybrid rocket motor, Aero. Sci. Technol., 67, 366, 10.1016/j.ast.2017.03.041 Tian, 2017, Three-dimensional numerical and experimental studies on transient ignition of hybrid rocket motor, Acta Astronaut., 140, 247, 10.1016/j.actaastro.2017.08.022 Chiba, 2016, Extinction–reignition superiority in a single-stage sounding hybrid rocket, Aero. Sci. Technol., 58, 437, 10.1016/j.ast.2016.09.010 Sun, 2016, Regression rate behaviors of HTPB-based propellant combinations for hybrid rocket motor, Acta Astronaut., 119, 137, 10.1016/j.actaastro.2015.11.015 Kumar Chidambaram, 2015, A numerical investigation of oxidizer mixed hybrid rocket motors, Aero. Sci. Technol., 45, 10, 10.1016/j.ast.2015.04.005 Lestrade, 2015, Liquefying fuel regression rate modeling in hybrid propulsion, Aero. Sci. Technol., 42, 80, 10.1016/j.ast.2014.11.015 Smirnov, 2015, Laminar diffusion flame propagation over thermally destructing material, Acta Astronaut., 109, 217, 10.1016/j.actaastro.2014.09.016 Gariani, 2011, Numerical simulation of HTPB combustion in a 2D hybrid slab combustor, Acta Astronaut., 69, 289, 10.1016/j.actaastro.2011.03.015 Sun, 2015, Regression rate and combustion performance investigation of aluminum metallized HTPB/98HP hybrid rocket motor with numerical simulation, Aero. Sci. Technol., 42, 287, 10.1016/j.ast.2015.01.014 Rybanin, 1988, Combustion wave propagation on a combustible material surface in a heterogeneous reaction, Combust. Explos. Shock Waves, 24, 416, 10.1007/BF00750012 Antoniou, 2005, A physics based comprehensive mathematical model to predict motor performance in hybrid rocket propulsion system, AIAA Serin, 2003, A fast computer code for hybrid motor design, Eulec, and results obtained for HTPB/O2 combination, AIAA Paper Bianchi, 2015, Simulation of gaseousoxygen/hydroxyl-terminated polybutadiene hybrid rocket flow fields and comparison with experiments, J. Propul. Power, 31, 919, 10.2514/1.B35587 Bianchi, 2013, CFD analysis of hybrid rocket §ow¦elds including fuel pyrolysis and nozzle erosion, AIAA Bianchi, 2014, Numerical modeling of GOx/HTPB hybrid rocket flow fields and comparison with experiments, AIAA May, 2016, Numerical simulation of the flow and combustion inside the reaction chamber of the AHRES hybrid rocket engine, vol. 132 May, 2016, Numerical simulation of the flow and combustion inside the reaction chamber of the AHRES hybrid rocket engine, vol. 132 2006 2008 Netzer, 1977, Modeling solid-fuel ramjet combustion, J. Spacecraft Rockets, 14, 10.2514/3.27994 Netzer, 1978, Model application to solid-fuel ramjet combustion, J. Spacecraft Rockets, 15, 10.2514/3.57316 Stevenson, 1981, Primitive variablemodel application to solid- fuel ramjet combustion, J. Spacecraft Rockets, 28, 10.2514/3.28050 Schulte, 1986, Fuel regression and flame stabilization studies of solid-fuel ramjets, J. Propul. Power, 2, 10.2514/3.22886 Schulte, 1987, Temperature and concentration measurements in a solid-fuel ramjet combustion chamber, J. Propul., 3, 10.2514/3.22962 Korting, 1987, Advanced hybrid rocket motor experiments, Acta Astronaut., 15, 97, 10.1016/0094-5765(87)90009-9 Carmicino, 2007, Performance comparison between two different injector configurations in a hybrid rocket, Aero. Sci. Technol., 61, 10.1016/j.ast.2006.08.009 DeLuca, 2013, Characterization of HTPB-based solid fuel formulations: performance, mechanical properties, and pollution, Acta Astronaut., 92, 150, 10.1016/j.actaastro.2012.05.002 Tadini, 2013, Ballistic characterization of mettallized HTPB-based fuels with swirling oxidizer in lab-scale hybrid burner, 1 Evan, 2007, Characterization of solid fuel mass burning enhancement utilizing an X-ray transparent hybrid rocket motor, 705 Paravan, 2013, Time-resolved regression rate of innovative hybrid solid fuel formulations, Prog. Propul. Phys., 4, 75, 10.1051/eucass/201304075 Tyurenkova, 2019, Flame propagation in weightlessness above the burning surface of material, Acta Astronaut., 159, 342, 10.1016/j.actaastro.2019.03.053 Tyurenkova, 2016, Material combustion in oxidant flows: self-similar solutions, Acta Astronaut., 120, 129, 10.1016/j.actaastro.2015.11.033 Wilcox, 1988, Reassessment of the scale-determining equation for advanced turbulence models, AIAA, 26, 1299, 10.2514/3.10041 Chiaverini, 1999, Pyrolysis behavior of hybrid rocket solid fuels under rapid heating conditions, J. Propul. Power, 15, 888, 10.2514/2.5512