Three-dimensional numerical modeling of a rocket engine with solid fuel
Tài liệu tham khảo
Chiaverini, 2001, Regression-rate and heat-transfer correlations for hybrid rocket combustion, J. Propul. Power, 17, 99, 10.2514/2.5714
Marksman, 1967, Fundamentals of the theory of combustion in the boundary layer of solid combustible hybrid fuel, Heterogen. Combust., 313
Arkhipov, 2016, Combustion of solid fuels blown by a high-speed gas flow (review), Phys. Combust. Explos., 52, 3
Sutton, 2001
Kustov, 1970, On the effect of chemical kinetics on the rate of combustion of a fuel plate in a turbulent flow of an oxidizer, Phys. Combust. Explos., 6, 54
Karabeyoglu, 2002, Combustion of liquefying hybrid propellants: Part 1. General theory, J. Propul. Power, 18
Karabeyoglu, 2004, Scale-up tests of high regression rate paraffinbased hybrid rocket fuels, J. Propul. Power, 20, 1037, 10.2514/1.3340
Greatrix, 2009, Regression rate estimation for standard-flow hybrid rocket engines, Aero. Sci. Technol., 13, 358, 10.1016/j.ast.2009.07.003
Fanton, 2012, Testing and modeling fuel regression rate in a miniature hybrid burner, Intern. J. Aerospace Eng., 15
Barato, 2016, Integrated approach for hybrid rocket technology development, Acta Astronaut., 128, 257, 10.1016/j.actaastro.2016.07.023
Cai, 2017, Transient analysis on ignition process of catalytic hybrid rocket motor, Aero. Sci. Technol., 67, 366, 10.1016/j.ast.2017.03.041
Tian, 2017, Three-dimensional numerical and experimental studies on transient ignition of hybrid rocket motor, Acta Astronaut., 140, 247, 10.1016/j.actaastro.2017.08.022
Chiba, 2016, Extinction–reignition superiority in a single-stage sounding hybrid rocket, Aero. Sci. Technol., 58, 437, 10.1016/j.ast.2016.09.010
Sun, 2016, Regression rate behaviors of HTPB-based propellant combinations for hybrid rocket motor, Acta Astronaut., 119, 137, 10.1016/j.actaastro.2015.11.015
Kumar Chidambaram, 2015, A numerical investigation of oxidizer mixed hybrid rocket motors, Aero. Sci. Technol., 45, 10, 10.1016/j.ast.2015.04.005
Lestrade, 2015, Liquefying fuel regression rate modeling in hybrid propulsion, Aero. Sci. Technol., 42, 80, 10.1016/j.ast.2014.11.015
Smirnov, 2015, Laminar diffusion flame propagation over thermally destructing material, Acta Astronaut., 109, 217, 10.1016/j.actaastro.2014.09.016
Gariani, 2011, Numerical simulation of HTPB combustion in a 2D hybrid slab combustor, Acta Astronaut., 69, 289, 10.1016/j.actaastro.2011.03.015
Sun, 2015, Regression rate and combustion performance investigation of aluminum metallized HTPB/98HP hybrid rocket motor with numerical simulation, Aero. Sci. Technol., 42, 287, 10.1016/j.ast.2015.01.014
Rybanin, 1988, Combustion wave propagation on a combustible material surface in a heterogeneous reaction, Combust. Explos. Shock Waves, 24, 416, 10.1007/BF00750012
Antoniou, 2005, A physics based comprehensive mathematical model to predict motor performance in hybrid rocket propulsion system, AIAA
Serin, 2003, A fast computer code for hybrid motor design, Eulec, and results obtained for HTPB/O2 combination, AIAA Paper
Bianchi, 2015, Simulation of gaseousoxygen/hydroxyl-terminated polybutadiene hybrid rocket flow fields and comparison with experiments, J. Propul. Power, 31, 919, 10.2514/1.B35587
Bianchi, 2013, CFD analysis of hybrid rocket §ow¦elds including fuel pyrolysis and nozzle erosion, AIAA
Bianchi, 2014, Numerical modeling of GOx/HTPB hybrid rocket flow fields and comparison with experiments, AIAA
May, 2016, Numerical simulation of the flow and combustion inside the reaction chamber of the AHRES hybrid rocket engine, vol. 132
May, 2016, Numerical simulation of the flow and combustion inside the reaction chamber of the AHRES hybrid rocket engine, vol. 132
2006
2008
Netzer, 1977, Modeling solid-fuel ramjet combustion, J. Spacecraft Rockets, 14, 10.2514/3.27994
Netzer, 1978, Model application to solid-fuel ramjet combustion, J. Spacecraft Rockets, 15, 10.2514/3.57316
Stevenson, 1981, Primitive variablemodel application to solid- fuel ramjet combustion, J. Spacecraft Rockets, 28, 10.2514/3.28050
Schulte, 1986, Fuel regression and flame stabilization studies of solid-fuel ramjets, J. Propul. Power, 2, 10.2514/3.22886
Schulte, 1987, Temperature and concentration measurements in a solid-fuel ramjet combustion chamber, J. Propul., 3, 10.2514/3.22962
Korting, 1987, Advanced hybrid rocket motor experiments, Acta Astronaut., 15, 97, 10.1016/0094-5765(87)90009-9
Carmicino, 2007, Performance comparison between two different injector configurations in a hybrid rocket, Aero. Sci. Technol., 61, 10.1016/j.ast.2006.08.009
DeLuca, 2013, Characterization of HTPB-based solid fuel formulations: performance, mechanical properties, and pollution, Acta Astronaut., 92, 150, 10.1016/j.actaastro.2012.05.002
Tadini, 2013, Ballistic characterization of mettallized HTPB-based fuels with swirling oxidizer in lab-scale hybrid burner, 1
Evan, 2007, Characterization of solid fuel mass burning enhancement utilizing an X-ray transparent hybrid rocket motor, 705
Paravan, 2013, Time-resolved regression rate of innovative hybrid solid fuel formulations, Prog. Propul. Phys., 4, 75, 10.1051/eucass/201304075
Tyurenkova, 2019, Flame propagation in weightlessness above the burning surface of material, Acta Astronaut., 159, 342, 10.1016/j.actaastro.2019.03.053
Tyurenkova, 2016, Material combustion in oxidant flows: self-similar solutions, Acta Astronaut., 120, 129, 10.1016/j.actaastro.2015.11.033
Wilcox, 1988, Reassessment of the scale-determining equation for advanced turbulence models, AIAA, 26, 1299, 10.2514/3.10041
Chiaverini, 1999, Pyrolysis behavior of hybrid rocket solid fuels under rapid heating conditions, J. Propul. Power, 15, 888, 10.2514/2.5512