An extended residual-based variational multiscale method for two-phase flow including surface tension

Computer Methods in Applied Mechanics and Engineering - Tập 200 - Trang 1866-1876 - 2011
U. Rasthofer1,2, F. Henke1,2, W.A. Wall2, V. Gravemeier1,2
1Emmy Noether Research Group “Computational Multiscale Methods for Turbulent Combustion”, Technische Universität München, Boltzmannstr. 15, 85748 Garching, Germany
2Institute for Computational Mechanics, Technische Universität München, Boltzmannstr. 15, 85748 Garching, Germany

Tài liệu tham khảo

Osher, 2003 Sethian, 2003, Level set methods for fluid interfaces, Ann. Rev. Fluid Mech., 35, 341, 10.1146/annurev.fluid.35.101101.161105 Sussman, 1994, A level set approach for computing solutions to incompressible two-phase flow, J. Comput. Phys., 114, 146, 10.1006/jcph.1994.1155 Nagrath, 2005, Computation of incompressible bubble dynamics with a stabilized finite element level set method, Comput. Methods Appl. Mech. Engrg., 194, 4565, 10.1016/j.cma.2004.11.012 Marchandise, 2006, A stabilized finite element method using a discontinuous level set approach for solving two phase incompressible flows, J. Comput. Phys., 219, 780, 10.1016/j.jcp.2006.04.015 Moës, 1999, A finite element method for crack growth without remeshing, Int. J. Numer. Methods Engrg., 46, 131, 10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J Chessa, 2003, An extended finite element method for two-phase fluids, J. Appl. Mech., 70, 10, 10.1115/1.1526599 Groß, 2007, An extended pressure finite element space for two-phase incompressible flows with surface tension, J. Comput. Phys., 224, 40, 10.1016/j.jcp.2006.12.021 Hughes, 1998, The variational multiscale method-a paradigm for computational mechanics, Comput. Methods Appl. Mech. Engrg., 166, 3, 10.1016/S0045-7825(98)00079-6 Braack, 2007, Stabilized finite element methods for the generalized Oseen problem, Comput. Methods Appl. Mech. Engrg., 196, 853, 10.1016/j.cma.2006.07.011 Bazilevs, 2007, Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows, Comput. Methods Appl. Mech. Engrg., 197, 173, 10.1016/j.cma.2007.07.016 Zienkiewicz, 1995, A general algorithm for compressible and incompressible flow, Part I, The split characteristic based scheme, Int. J. Numer. Methods Fluids, 20, 869, 10.1002/fld.1650200812 Zlotnik, 2009, Hierarchical XFEM for n-phase flow (n>2), Comput. Methods Appl. Mech. Engrg., 198, 2329, 10.1016/j.cma.2009.02.025 Fries, 2009, The intrinsic XFEM for two-phase flows, Int. J. Numer. Methods Fluids, 60, 437, 10.1002/fld.1901 Minev, 2003, A finite element technique for multifluid incompressible flow using Eulerian grids, J. Comput. Phys., 187, 255, 10.1016/S0021-9991(03)00098-6 Coppola-Owen, 2005, Improving Eulerian two-phase flow finite element approximation with discontinuous gradient pressure shape functions, Int. J. Numer. Methods Fluids, 49, 1287, 10.1002/fld.963 Losasso, 2006, Spatially adaptive techniques for level set methods and incompressible flow, Comput. Fluids, 35, 995, 10.1016/j.compfluid.2005.01.006 V. Gravemeier, W.A. Wall, Residual-based variational multiscale methods for laminar, transitional and turbulent variable-density flow at low Mach number, Int. J. Numer. Meth. Fluids, in press, available online: <http://dx.doi.org/10.1002/fld.2242>. Hughes, 1987 Moës, 2003, A computational approach to handle complex microstructure geometries, Comput. Methods Appl. Mech. Engrg., 192, 3163, 10.1016/S0045-7825(03)00346-3 Chessa, 2003, On the construction of blending elements for local partition of unity enriched finite elements, Int. J. Numer. Methods Engrg., 57, 1015, 10.1002/nme.777 Chessa, 2004, Arbitrary discontinuities in space-time finite elements by level sets and XFEM, Int. J. Numer. Methods Engrg., 61, 2595, 10.1002/nme.1155 Réthoré, 2005, An energy-conserving scheme for dynamic crack growth using the extended finite element method, Int. J. Numer. Methods Engrg., 63, 631, 10.1002/nme.1283 Mayer, 2009, Interface handling for three-dimensional higher-order XFEM-computations in fluid-structure interaction, Int. J. Numer. Methods Engrg., 47, 846, 10.1002/nme.2600 Gerstenberger, 2007, An extended finite element method/Lagrange multiplier based approach for fluid-structure interaction, Comput. Methods Appl. Mech. Engrg., 197, 1699, 10.1016/j.cma.2007.07.002 van der Bos, 2009, Numerical simulation of premixed combustion using an enriched finite element method, J. Comput. Phys., 228, 3605, 10.1016/j.jcp.2008.12.039 S. Groß, A. Reusken, Finite element discretization error analysis of a surface tension force in two-phase incompressible flows, Preprint 262, IGPM, RWTH Aachen, SIAM J. Numer. Anal. 45 (2007) 1679–1700. Gravemeier, 2010, An algebraic variational multiscalemultigrid method for large-eddy simulation of turbulent variable-density flow at low Mach number, J. Comput. Phys., 229, 6047, 10.1016/j.jcp.2010.04.036 Geuzaine, 2009, Gmsh: a three-dimensional finite element mesh generator with built-in pre- and post-processing facilities, Int. J. Numer. Methods Engrg., 79, 1309, 10.1002/nme.2579 Marchandise, 2007, A stabilized finite element method using discontinuous level set approach for the computation of bubble dynamics, J. Comput. Phys., 225, 949, 10.1016/j.jcp.2007.01.005 Clift, 1978