The Pentagonal Fuzzy Number:Its Different Representations, Properties, Ranking, Defuzzification and Application in Game Problems
Tóm tắt
Từ khóa
Tài liệu tham khảo
Chang, 1972, On fuzzy mappings and control, IEEE Trans. Syst. Man Cybern., 2, 30, 10.1109/TSMC.1972.5408553
Atanassov, K.T. (1983). Intuitionistic Fuzzy Sets, VII ITKR’s Session.
Smarandache, F. (1998). A Unifying Field in Logics Neutrosophy: Neutrosophic Probability, American Research Press.
Guijun, 1998, The applications of interval-valued fuzzy numbers and interval distribution numbers, Fuzzy Sets Syst., 98, 331, 10.1016/S0165-0114(96)00368-5
Wang, 2001, Correlation and information energy of interval-valued fuzzy number, Fuzzy Sets Syst., 103, 169, 10.1016/S0165-0114(97)00303-5
Lin, 2002, Fuzzy job-shop scheduling based on ranking level (α,β) interval-valued fuzzy numbers, IEEE Trans. Fuzzy Syst., 10, 510, 10.1109/TFUZZ.2002.800659
Wei, 2009, A new approach for fuzzy risk analysis based on similarity measures of generalized fuzzy numbers, Expert Syst. Appl., 36, 589, 10.1016/j.eswa.2007.09.033
Kalaichelvi, 2012, Application of interval fuzzy matrices and interval valued fuzzy soft sets in the analysis of/the factors influencing high scores in higher secondary examinations, Int. J. Math. Sci. Appl., 2, 777
Kumar, 2015, Fuzzy fault tree analysis using level (?,?) interval-valued fuzzy numbers, Ind. Eng. Lett., 5, 36
Abirami, 2015, On L-R type interval valued fuzzy numbers in critical path analysis, Int. J. Fuzzy Math. Arch., 6, 77
Su, 2007, Fuzzy programming based on interval-valued fuzzy numbers and ranking, Int. J. Contemp. Math. Sci., 2, 393, 10.12988/ijcms.2007.07033
Bhatia, 2012, Sensitivity analysis for interval valued fully fuzzy linear programming problems, J. Appl. Res. Technol., 10, 871, 10.22201/icat.16656423.2012.10.6.347
Mondal, 2016, Differential equation with interval valued fuzzy number and its applications, Int. J. Syst. Assur. Eng. Manag., 7, 370, 10.1007/s13198-016-0474-7
Ebrahimnejad, 2018, A method for solvig linear programming with interval-valued fuzzy variables, RAIRO-Oper. Res., 52, 955, 10.1051/ro/2018007
Dahooie, J.H., Zavadskas, E.K., Abolhasani, M., Vanaki, A., and Turskis, Z. (2018). A Novel Approach for Evaluation of Projects Using an Interval–Valued Fuzzy Additive Ratio Assessment (ARAS) Method: A Case Study of Oil and Gas Well Drilling Projects. Symmetry, 10.
Panda, 2015, A study on pentagonal fuzzy number and its corresponding matrices, Pac. Sci. Rev. B Hum. Soc. Sci., 1, 131
Anitha, P., and Parvathi, P. (2016, January 16–21). An Inventory Model with Stock Dependent Demand, two parameter Weibull Distribution Deterioration in a juzzy environment. Proceedings of the 2016 Online International Conference on Green Engineering and Technologies (IC-GET), Hokkaido, Japan.
Helen, 2015, A new operation and ranking on pentagon fuzzy numbers, Int. J. Math. Sci. Appl., 5, 341
Siji, 2016, An Approach for Solving Network Problem with Pentagonal Intuitionistic Fuzzy Numbers Using Ranking Technique, Middle-East J. Sci. Res., 24, 2977
Raj, 2016, Application of Pentagonal Fuzzy Number in Neural Network, Int. J. Math. Appl., 4, 149
Dhanamandand, 2016, Cost analysis on a probabilistic multi objective-multi item inventory model using pentagonal fuzzy number, Glob. J. Appl. Math. Math. Sci., 9, 151
Pathinathan, 2015, Reverse order Triangular, Trapezoidal and Pentagonal Fuzzy Numbers, Ann. Pure Appl. Math., 9, 107
Ponnivalavan, 2015, Intuitionistic pentagonal fuzzy number, ARPN J. Eng. Appl. Sci., 10, 5446
Christi, 2016, Transportation Problem with Pentagonal Intuitionistic Fuzzy Numbers Solved Using Ranking Technique and Russell’s Method, Int. J. Eng. Res. Appl., 6, 82
Mondal, 2017, Pentagonal fuzzy number, its properties and application in fuzzy equation, Future Comput. Inform. J., 2, 110, 10.1016/j.fcij.2017.09.001
Mondal, 2018, Non-linear interval-valued fuzzy numbers and their application in difference equations, Granul. Comput., 3, 177, 10.1007/s41066-017-0063-4
Chu, 2004, COA defuzzification method for evaluating Cpk under fuzzy environments, J. Discret. Math. Sci.Cryptogr., 7, 271, 10.1080/09720529.2004.10698008
Perumal, 2008, Largest of maximum (LOM) method for switching fuzzy control system, Aust. J. Electr. Electron. Eng., 4, 167, 10.1080/1448837X.2008.11464183
Tóth-Laufer, E., and Takács, M. (2012, January 26–28). The Effect of Aggregation and DefuzzificationMethod Selection on the Risk Level Calculation. Proceedings of the 10th IEEE Jubilee International Symposium on Applied Machine Intelligence and Informatics, Herl’any, Slovakia.
Mondal, 2018, Adaptive strategies for system of fuzzy differential equation: Application of arms race model, J. Math. Comput. Sci., 18, 192, 10.22436/jmcs.018.02.07
Abbasbandy, 2006, Ranking of fuzzy numbers by sign distance, Inform. Sci., 176, 2405, 10.1016/j.ins.2005.03.013
Abbasbandy, 2009, A new approach for ranking of trapezoidal fuzzy numbers, Comput. Math. Appl., 57, 413, 10.1016/j.camwa.2008.10.090
Abbasbandy, 2011, An improvement on centroid point method for ranking of fuzzy numbers, J. Sci. IAU, 78, 109
Asady, 2010, The revised method of ranking LR fuzzy number based on deviation degree, Expert Syst. Appl., 37, 5056, 10.1016/j.eswa.2009.12.005
Chen, 2003, A new method for handling multicriteria fuzzy decision making problems using FN-IOWA operators, Cybern. Syst., 34, 109, 10.1080/01969720302866
Chen, 2007, Fuzzy risk analysis based on the ranking of generalized trapezoidal fuzzy numbers, Appl. Intell., 26, 1, 10.1007/s10489-006-0003-5
Chen, 2009, Fuzzy risk analysis based on the ranking of generalized fuzzy numbers with different heights and different spreads, Expert Syst. Appl., 36, 6833, 10.1016/j.eswa.2008.08.015
Deng, 2005, A TOPSIS-based centroid index ranking method of fuzzy numbers and its application in decision-making, Cybern. Syst., 36, 581, 10.1080/01969720590961727
Deng, 2006, Ranking fuzzy numbers with an area method usingofgyration, Comput. Math. Appl., 51, 1127, 10.1016/j.camwa.2004.11.022
Hajjari, 2011, Ranking of fuzzy numbers based on ambiguity degree, Aust. J. Basic Appl. Sci., 5, 62
Hajjari, 2011, On deviation degree methods for ranking fuzzy numbers, Aust. J. Basic Appl. Sci., 5, 750
Wang, 2009, Ranking L-R fuzzy numbers based on deviation degree, Inform. Sci., 176, 2070, 10.1016/j.ins.2008.08.017
Chen, 2001, An approximate approach for ranking fuzzy numbers based on left and right dominance, Comput. Math. Appl., 41, 1589, 10.1016/S0898-1221(01)00124-9
Chen, 2002, The preference order of fuzzy numbers, Comput. Math. Appl., 44, 1455, 10.1016/S0898-1221(02)00270-5
Liu, 2005, Ranking fuzzy numbers with preference weighting function expectation, Comput. Math. Appl., 49, 1455, 10.1016/j.camwa.2004.11.014
Cheng, 1998, A new approach for ranking fuzzy numbers by distance method, Fuzzy Sets Syst., 95, 307, 10.1016/S0165-0114(96)00272-2
Chu, 2002, Ranking fuzzy numbers with an area between the centroid point and orginalpoint, Comput. Math. Appl., 43, 111, 10.1016/S0898-1221(01)00277-2
Wang, 2008, The revised method of ranking fuzzy numbers with an area between the centroid and original points, Comput. Math. Appl., 55, 2033, 10.1016/j.camwa.2007.07.015
Halgamuge, S., Runkler, T., and Glesner, M. (, January 8–11). On the neural defuzzification methods. Proceedings of the 5th IEEE International Conference on Fuzzy Systems, New Orleans, LA, USA.
Song, 1996, Adaptive learning defuzzificatin techniques and applications, Comput. Math. Appl., 81, 321
Yager, 1996, Knowledge-based defuzzification, Fuzzy Sets Syst., 80, 177, 10.1016/0165-0114(95)00191-3
Filev, 1991, A generalized defuzzification method via BADD distributions, Int. J. Intell. Syst., 6, 687, 10.1002/int.4550060702
Jiang, 1996, Generalized defuzzification strategies and their parameter learning procedure, IEEE Trans. Fuzzy Syst., 4, 64, 10.1109/91.481845
Ramon, E. (1979). Moore, Methods and Applications of Interval Analysis, SIAM. Studies in Applied and Numerical Mathematics.