A new 3D MRI segmentation method based on Generative Adversarial Network and Atrous Convolution

Biomedical Signal Processing and Control - Tập 71 - Trang 103155 - 2022
Gaffari Çelik1, Muhammed Fatih Talu2
1Agri Ibrahim Cecen University, Department of Computer Technology, Agri, Turkey
2Inonu University, Department of Computer Science, Malatya, Turkey

Tài liệu tham khảo

Singh, 2021, An unsupervised orthogonal rotation invariant moment based fuzzy C-means approach for the segmentation of brain magnetic resonance images, Expert Syst. Appl., 164, 10.1016/j.eswa.2020.113989 Despotović, 2015, MRI segmentation of the human brain: challenges, methods, and applications, Comput. Math. Methods Med., 2015, 10.1155/2015/450341 Marras, 2014, 3D geometric split-merge segmentation of brain MRI datasets, Comput. Biol. Med., 48, 119, 10.1016/j.compbiomed.2014.02.013 Bontempi, 2020, CEREBRUM: a fast and fully-volumetric Convolutional Encoder-decodeR for weakly-supervised sEgmentation of BRain strUctures from out-of-the-scanner MRI, Med. Image Anal., 62, 10.1016/j.media.2020.101688 Kahali, 2017, A two-stage fuzzy multi-objective framework for segmentation of 3D MRI brain image data, Appl. Soft Comput. J., 60, 312, 10.1016/j.asoc.2017.07.001 Aranguren, 2021, Improving the segmentation of magnetic resonance brain images using the LSHADE optimization algorithm, Biomed. Signal Process. Control., 64, 10.1016/j.bspc.2020.102259 Coupé, 2020, AssemblyNet: A large ensemble of CNNs for 3D whole brain MRI segmentation, Neuroimage., 219, 10.1016/j.neuroimage.2020.117026 M. Zhan, R. Goebel, B. de Gelder, Ventral and dorsal pathways relate differently to visual awareness of body postures under continuous flash suppression, ENeuro. 5 (2018) 1–18. 10.1523/ENEURO.0285-17.2017. G. Dantzig, D.R. Fulkerson, On the Max-Flow MinCut Theorem of Networks, in: Linear Lnequalities Relat. Syst., Princeton University Press, Princeton, New Jersey, 1956: pp. 215–221. M. Jenkinson, C.F. Beckmann, T.E.J. Behrens, M.W. Woolrich, S.M. Smith, FSL, Neuroimage. 62 (2012) 782–790. 10.1016/j.neuroimage.2011.09.015. Ashburner, 2000, Voxel-based morphometry – the methods, Neuroimage, 11, 805, 10.1006/nimg.2000.0582 Fischl, 2012, FreeSurfer, Neuroimage, 62, 774, 10.1016/j.neuroimage.2012.01.021 Manjón, 2016, Volbrain: An online MRI brain volumetry system, Front. Neuroinform., 10, 1, 10.3389/fninf.2016.00030 Dorent, 2021, Learning joint segmentation of tissues and brain lesions from task-specific hetero-modal domain-shifted datasets, Med. Image Anal., 67, 10.1016/j.media.2020.101862 Cerri, 2021, A contrast-adaptive method for simultaneous whole-brain and lesion segmentation in multiple sclerosis, Neuroimage., 225, 10.1016/j.neuroimage.2020.117471 Wang, 2021, Reduction in hippocampal volumes subsequent to heavy cannabis use: a 3-year longitudinal study, Psychiatry Res., 295, 10.1016/j.psychres.2020.113588 Xu, 2020, Abnormal development pattern of the amygdala and hippocampus from childhood to adulthood with autism, J. Clin. Neurosci., 78, 327, 10.1016/j.jocn.2020.03.049 Ö. Çiçek, A. Abdulkadir, S.S. Lienkamp, T. Brox, O. Ronneberger, 3D U-net: Learning dense volumetric segmentation from sparse annotation, in: Lect. Notes Comput. Sci. (Including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), 2016: pp. 424–432. 10.1007/978-3-319-46723-8_49. I.J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, Y. Bengio, Generative Adversarial Networks, Commun. ACM. 63 (2014) 139–144. 10.1145/3422622. Rajchl, 2018, NeuroNet: fast and robust reproduction of multiple brain image segmentation pipelines, ArXiv, 1 A. Guha Roy, S. Conjeti, N. Navab, C. Wachinger, QuickNAT: A fully convolutional network for quick and accurate segmentation of neuroanatomy, Neuroimage. 186 (2019) 713–727. 10.1016/j.neuroimage.2018.11.042. M. Luna, S.H. Park, 3D patchwise U-net with transition layers for MR brain segmentation, Lect. Notes Comput. Sci. (Including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics). 11383 LNCS (2019) 394–403. 10.1007/978-3-030-11723-8_40. H.J. Kuijf, Bennink, E., MRBrainS18, Grand Challenge on MR Brain Segmentation at MICCAI 2018. https://mrbrains18.isi.uu.n, 2020, (accessed 06 August 2020). Cirillo, 2020, Vox2Vox: 3D-GAN for Brain Tumour Segmentation, ArXiv, 1 Chen, 2018, VoxResNet: Deep voxelwise residual networks for brain segmentation from 3D MR images, Neuroimage, 170, 446, 10.1016/j.neuroimage.2017.04.041 Dolz, 2019, HyperDense-Net: a hyper-densely connected CNN for multi-modal image segmentation, IEEE Trans. Med. Imaging, 38, 1116, 10.1109/TMI.2018.2878669 Internet Brain Segmentation Repository (IBSR). https://www.nitrc.org/projects/ibsr, 2020, (accessed 10 June 2020). Mendrik, 2015, MRBrainS challenge: online evaluation framework for brain image segmentation in 3T MRI scans, Comput. Intell. Neurosci., 2015, 10.1155/2015/813696 Bitar, 2006, MR pulse sequences: What every radiologist wants to know but is afraid to ask, Radiographics, 26, 513, 10.1148/rg.262055063 Smith, 2002, Fast robust automated brain extraction, Hum. Brain Mapp., 17, 143, 10.1002/hbm.10062 Shattuck, 1935, Brainsuite: An automated cortical surface identification tool, Lect. Notes Comput. Sci. (Including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), 50 Iglesias, 2011, Robust brain extraction across datasets and comparison with publicly available methods, IEEE Trans. Med. Imaging., 30, 1617, 10.1109/TMI.2011.2138152 Eskildsen, 2012, BEaST: Brain extraction based on nonlocal segmentation technique, Neuroimage., 59, 2362, 10.1016/j.neuroimage.2011.09.012 A. Punjabi, A. Martersteck, Y. Wang, T.B. Parrish, A.K. Katsaggelos, Neuroimaging modality fusion in Alzheimer’s classification using convolutional neural networks, PLoS One. 14 (2019) 1–14. 10.1371/journal.pone.0225759. V. Fonov, A.C. Evans, K. Botteron, C.R. Almli, R.C. McKinstry, D.L. Collins, Unbiased average age-appropriate atlases for pediatric studies, Neuroimage. 54 (2011) 313–327. 10.1016/j.neuroimage.2010.07.033. F. Milletari, N. Navab, S.A. Ahmadi, V-Net: Fully convolutional neural networks for volumetric medical image segmentation, Proc. - 2016 4th Int. Conf. 3D Vision, 3DV 2016. (2016) 565–571. 10.1109/3DV.2016.79. Chen, 2018, DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs, IEEE Trans. Pattern Anal. Mach. Intell., 40, 834, 10.1109/TPAMI.2017.2699184 Zhou, 2020, AFPNet: A 3D fully convolutional neural network with atrous-convolution feature pyramid for brain tumor segmentation via MRI images, Neurocomputing, 402, 235, 10.1016/j.neucom.2020.03.097 J. Fu, J. Liu, H. Tian, Y. Li, Y. Bao, Z. Fang, H. Lu, Dual attention network for scene segmentation, Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit. 2019-June (2019) 3141–3149. 10.1109/CVPR.2019.00326. Cárdenes, 2009, A multidimensional segmentation evaluation for medical image data, Comput. Methods Programs Biomed., 96, 108, 10.1016/j.cmpb.2009.04.009 Taha, 2015, Metrics for evaluating 3D medical image segmentation: analysis, selection, and tool, BMC Med. Imaging., 15, 10.1186/s12880-015-0068-x D.P. Kingma, J.L. Ba, Adam: A method for stochastic optimization, 3rd Int. Conf. Learn. Represent. ICLR 2015 - Conf. Track Proc. (2015) 1–15.