SARS-CoV-2 in wastewater: From detection to evaluation
Tài liệu tham khảo
A.R. Fehr, S. Perlman, Coronaviruses: an Overview of Their Replication and Pathogenesis, (1940-6029 (Electronic)).
Schoeman, 2019, Coronavirus envelope protein: current knowledge, Virol. J., 16, 69, 10.1186/s12985-019-1182-0
Chen, 2020, Overview of lethal human coronaviruses, Signal Transduct. Target. Therap., 5, 89, 10.1038/s41392-020-0190-2
Ludwig, 2020, Coronaviruses and SARS-CoV-2: a brief overview, Anesth. Analg., 131, 93, 10.1213/ANE.0000000000004845
V’kovski, 2021, Coronavirus biology and replication: implications for SARS-CoV-2, Nat. Rev. Microbiol., 19, 155, 10.1038/s41579-020-00468-6
2020
2021
Bazant, 2021, A guideline to limit indoor airborne transmission of COVID-19, Proc. Natl. Acad. Sci. Unit. States Am., 118, 10.1073/pnas.2018995118
2021
2018, The cooperative human, Nat. Human Behav., 2, 427, 10.1038/s41562-018-0389-1
Parodi, 2020, From containment to mitigation of COVID-19 in the US, JAMA, 323, 1441, 10.1001/jama.2020.3882
Galbadage, 2020, Does COVID-19 spread through droplets alone?, Front. Public Health, 8, 10.3389/fpubh.2020.00163
Chua, 2020, Face masks in the new COVID-19 normal: materials, testing, and perspectives, Research, 2020
Daniel, 2021, Effective design of barrier enclosure to contain aerosol emissions from COVID-19 patients, Indoor Air, 10.1111/ina.12828
Jiang, 2021, Towards the prevention of coronavirus infection: what role can polymers play?, Mater. Today Adv., 100140, 10.1016/j.mtadv.2021.100140
Leow, 2021, Design and development of multilayer cotton masks via machine learning, Mater. Today Adv., 12, 100178, 10.1016/j.mtadv.2021.100178
Lin, 2020, Sanitizing agents for virus inactivation and disinfection, View, 1, e16, 10.1002/viw2.16
Ooi, 2021, Risk assessment of airborne COVID-19 exposure in social settings, Phys. Fluids, 33, 10.1063/5.0055547
Pan, 2020, Lab-on-mask for remote respiratory monitoring, ACS Mater. Lett., 2, 1178, 10.1021/acsmaterialslett.0c00299
Soo, 2022, Polylactic acid face masks: are these the sustainable solutions in times of COVID-19 pandemic?, Sci. Total Environ., 807, 151084, 10.1016/j.scitotenv.2021.151084
Su, 2020, Sensors and analytical technologies for air quality: particulate matters and bioaerosols, Chem. Asia. J., 15, 4241, 10.1002/asia.202001051
Wang, 2021, N95 respirator decontamination: a study in reusability, Mater. Today Adv., 11, 100148, 10.1016/j.mtadv.2021.100148
A.A. Rabaan, S.H. Al-Ahmed, S. Haque, R. Sah, R. Tiwari, Y.S. Malik, K. Dhama, M.I. Yatoo, D.K. Bonilla-Aldana, A.J. Rodriguez-Morales, SARS-CoV-2, SARS-CoV, and MERS-COV: A Comparative Overview, (1124-9390 (Print)).
Y.R. Guo, Q.D. Cao, Z.S. Hong, Y.Y. Tan, S.D. Chen, H.J. Jin, K.S. Tan, D.Y. Wang, Y. Yan, The Origin, Transmission and Clinical Therapies on Coronavirus Disease 2019 (COVID-19) Outbreak - an Update on the Status, (2054-9369 (Electronic)).
Kaafarani, 2021
Kitajima, 2020, SARS-CoV-2 in wastewater: state of the knowledge and research needs, Sci. Total Environ., 739, 139076, 10.1016/j.scitotenv.2020.139076
W.K. Leung, P.K.S. To Kf Fau - Chan, H.L.Y. Chan Pk Fau - Chan, A.K.L. Chan Hl Fau - Wu, N. Wu Ak Fau - Lee, K.Y. Lee N Fau - Yuen, J.J.Y. Yuen Ky Fau - Sung, J.J. Sung, Enteric Involvement of Severe Acute Respiratory Syndrome-Associated Coronavirus Infection, (0016-5085 (Print)).
Amoah, 2020, Coronaviruses in wastewater processes: source, fate and potential risks, Environ. Int., 143, 105962, 10.1016/j.envint.2020.105962
Bogler, 2020, Rethinking wastewater risks and monitoring in light of the COVID-19 pandemic, Nat. Sustain., 3, 981, 10.1038/s41893-020-00605-2
Hung, 2003, The SARS epidemic in Hong Kong: what lessons have we learned?, J. R. Soc. Med., 96, 374, 10.1177/014107680309600803
Foladori, 2020, SARS-CoV-2 from faeces to wastewater treatment: what do we know? A review, Sci. Total Environ., 743, 140444, 10.1016/j.scitotenv.2020.140444
Boehm, 2019, Systematic review and meta-analysis of decay rates of waterborne mammalian viruses and coliphages in surface waters, Water Res., 164, 114898, 10.1016/j.watres.2019.114898
Zhang, 2021, Comparative study on virus shedding patterns in nasopharyngeal and fecal specimens of COVID-19 patients, Sci. China Life Sci., 64, 486, 10.1007/s11427-020-1783-9
D.S. Dahiya, A.A.-O. Kichloo, M.A.-O. Albosta, S. Pagad, F. Wani, Gastrointestinal Implications in COVID-19, (1708-8267 (Electronic)).
Xu, 2020, Characteristics of pediatric SARS-CoV-2 infection and potential evidence for persistent fecal viral shedding, Nat. Med., 26, 502, 10.1038/s41591-020-0817-4
Zhang, 2020, 2020
Y. Wu, C. Guo, L. Tang, Z. Hong, J. Zhou, X. Dong, H. Yin, Q. Xiao, Y. Tang, X. Qu, L. Kuang, X. Fang, N. Mishra, J. Lu, H. Shan, G. Jiang, X. Huang, Prolonged Presence of SARS-CoV-2 Viral RNA in Faecal Samples, (2468-1253 (Electronic)).
Y. Chen, L. Chen, Q. Deng, G. Zhang, K. Wu, L. Ni, Y. Yang, B. Liu, W. Wang, C. Wei, J. Yang, G. Ye, Z.A.-O.X. Cheng, The Presence of SARS-CoV-2 RNA in the Feces of COVID-19 Patients, (1096-9071 (Electronic)).
Aguiar-Oliveira, 2020, Wastewater-based epidemiology (WBE) and viral detection in polluted surface water: a valuable tool for COVID-19 surveillance-A brief review, Int. J. Environ. Res. Publ. Health, 17, 9251, 10.3390/ijerph17249251
Polo, 2020, Making waves: wastewater-based epidemiology for COVID-19 – approaches and challenges for surveillance and prediction, Water Res., 186, 116404, 10.1016/j.watres.2020.116404
Choi, 2019, Social, demographic, and economic correlates of food and chemical consumption measured by wastewater-based epidemiology, Proc. Natl. Acad. Sci. Unit. States Am., 116, 10.1073/pnas.1910242116
Lorenzo, 2019, Wastewater-based epidemiology: current status and future prospects, Curr. Opin. Environ. Sci. Health, 9, 77, 10.1016/j.coesh.2019.05.007
Sims, 2020, Future perspectives of wastewater-based epidemiology: monitoring infectious disease spread and resistance to the community level, Environ. Int., 139, 105689, 10.1016/j.envint.2020.105689
F. Wu, A. Xiao, J. Zhang, K. Moniz, N. Endo, F. Armas, R. Bonneau, M.A. Brown, M. Bushman, P.R. Chai, C. Duvallet, T.B. Erickson, K. Foppe, N. Ghaeli, X. Gu, W.P. Hanage, K.H. Huang, W.L. Lee, M. Matus, K.A. McElroy, J. Nagler, S.F. Rhode, M. Santillana, J.A. Tucker, S. Wuertz, S. Zhao, J. Thompson, E.J. Alm, SARS-CoV-2 Titers in Wastewater Foreshadow Dynamics and Clinical Presentation of New COVID-19 Cases. LID - 2020.06.15.20117747 [pii] LID - 10.1101/2020.06.15.20117747 [doi].
Xagoraraki, 2019, 75
Mlejnkova, 2020, Preliminary study of sars-cov-2 occurrence in wastewater in the Czech republic, Int. J. Environ. Res. Publ. Health, 17, 5508, 10.3390/ijerph17155508
T. Baldovin, I. Amoruso, M. Fonzo, A. Buja, V. Baldo, S. Cocchio, C. Bertoncello, SARS-CoV-2 RNA Detection and Persistence in Wastewater Samples: an Experimental Network for COVID-19 Environmental Surveillance in Padua, Veneto Region (NE Italy), (1879-1026 (Electronic)).
G. Chavarria-Miró, E. Anfruns-Estrada, A. Martínez-Velázquez, M. Vázquez-Portero, S.A.-O. Guix, M. Paraira, B. Galofré, G. Sánchez, R.A.-O. Pintó, A.A.-O. Bosch, Time Evolution of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) in Wastewater during the First Pandemic Wave of COVID-19 in the Metropolitan Area of Barcelona, Spain. LID - 10.1128/AEM.02750-20 [doi] LID - e02750-20, (1098-5336 (Electronic)).
Randazzo, 2020, Metropolitan wastewater analysis for COVID-19 epidemiological surveillance, Int. J. Hyg Environ. Health, 230, 113621, 10.1016/j.ijheh.2020.113621
A. Hata, H. Hara-Yamamura, Y. Meuchi, S. Imai, R. Honda, Detection of SARS-CoV-2 in Wastewater in Japan during a COVID-19 Outbreak, (1879-1026 (Electronic)).
Saththasivam, 2021, COVID-19 (SARS-CoV-2) outbreak monitoring using wastewater-based epidemiology in Qatar, Sci. Total Environ., 774, 145608, 10.1016/j.scitotenv.2021.145608
E. Róka, B. Khayer, Z. Kis, L.B. Kovács, E. Schuler, N. Magyar, T. Málnási, O. Oravecz, B. Pályi, T. Pándics, M. Vargha, Ahead of the Second Wave: Early Warning for COVID-19 by Wastewater Surveillance in Hungary, (1879-1026 (Electronic)).
Huang, 2021, Detection of SARS-CoV-2 in wastewater in Halifax, Nova Scotia, Canada, using four RT-qPCR assays, FACETS, 6, 959, 10.1139/facets-2021-0026
P.M. D'Aoust, E. Mercier, D. Montpetit, J.J. Jia, I. Alexandrov, N. Neault, A.T. Baig, J. Mayne, X. Zhang, T. Alain, M.A. Langlois, M.R. Servos, M. MacKenzie, D. Figeys, A.E. MacKenzie, T.E. Graber, R. Delatolla, Quantitative Analysis of SARS-CoV-2 RNA from Wastewater Solids in Communities with Low COVID-19 Incidence and Prevalence, (1879-2448 (Electronic)).
S. Nasseri, J. Yavarian, A.N. Baghani, T.M. Azad, A. Nejati, R. Nabizadeh, M. Hadi, N.Z.S. Jandaghi, B. Vakili, S.K.A. Vaghefi, M. Baghban, S. Yousefi, S. Nazmara, M. Alimohammadi, The Presence of SARS-CoV-2 in Raw and Treated Wastewater in 3 Cities of Iran: Tehran, Qom and Anzali during Coronavirus Disease 2019 (COVID-19) Outbreak, (2052-336X (Print)).
A. Albastaki, M. Naji, R. Lootah, R. Almeheiri, H. Almulla, I. Almarri, A. Alreyami, A. Aden, R. Alghafri, First Confirmed Detection of SARS-COV-2 in Untreated Municipal and Aircraft Wastewater in Dubai, UAE: the Use of Wastewater Based Epidemiology as an Early Warning Tool to Monitor the Prevalence of COVID-19, (1879-1026 (Electronic)).
W. Ahmed, P.M. Bertsch, N. Angel, K. Bibby, A. Bivins, L. Dierens, J. Edson, J. Ehret, P. Gyawali, K.A. Hamilton, I. Hosegood, P. Hugenholtz, G. Jiang, M. Kitajima, H.T. Sichani, J. Shi, K.M. Shimko, S.L. Simpson, W.J.M. Smith, E.M. Symonds, K.V. Thomas, R. Verhagen, J. Zaugg, J.F. Mueller, Detection of SARS-CoV-2 RNA in Commercial Passenger Aircraft and Cruise Ship Wastewater: a Surveillance Tool for Assessing the Presence of COVID-19 Infected Travellers. LID - 10.1093/jtm/taaa116 [doi] LID - taaa116, (1708-8305 (Electronic)).
Wong, 2021, Non-intrusive wastewater surveillance for monitoring of a residential building for COVID-19 cases, Sci. Total Environ., 786, 147419, 10.1016/j.scitotenv.2021.147419
Betancourt, 2021, COVID-19 containment on a college campus via wastewater-based epidemiology, targeted clinical testing and an intervention, Sci. Total Environ., 779, 146408, 10.1016/j.scitotenv.2021.146408
Gibas, 2021, Implementing building-level SARS-CoV-2 wastewater surveillance on a university campus, Sci. Total Environ., 782, 146749, 10.1016/j.scitotenv.2021.146749
P.M. D'Aoust, T.E. Graber, E. Mercier, D. Montpetit, I. Alexandrov, N. Neault, A.T. Baig, J. Mayne, X. Zhang, T. Alain, M.R. Servos, N. Srikanthan, M. MacKenzie, D. Figeys, D. Manuel, P. Jüni, A.E. MacKenzie, R. Delatolla, Catching a Resurgence: Increase in SARS-CoV-2 Viral RNA Identified in Wastewater 48 H before COVID-19 Clinical Tests and 96 H before Hospitalizations, (1879-1026 (Electronic)).
Gonçalves, 2021, Detection of SARS-CoV-2 RNA in hospital wastewater from a low COVID-19 disease prevalence area, Sci. Total Environ., 755, 143226, 10.1016/j.scitotenv.2020.143226
Fernandez-Cassi, 2021, Wastewater monitoring outperforms case numbers as a tool to track COVID-19 incidence dynamics when test positivity rates are high, Water Res., 200, 117252, 10.1016/j.watres.2021.117252
B. Saawarn, S. Hait, Occurrence, Fate and Removal of SARS-CoV-2 in Wastewater: Current Knowledge and Future Perspectives, (2213-2929 (Print)).
Tran, 2021, SARS-CoV-2 coronavirus in water and wastewater: a critical review about presence and concern, Environ. Res., 193, 110265, 10.1016/j.envres.2020.110265
F.J. Simmons, I. Xagoraraki, Release of Infectious Human Enteric Viruses by Full-Scale Wastewater Utilities, (1879-2448 (Electronic)).
Y.A.-O. Ye, P.A.-O. Chang, J. Hartert, K.A.-O. Wigginton, Reactivity of Enveloped Virus Genome, Proteins, and Lipids with Free Chlorine and UV(254), (1520-5851 (Electronic)).
Gundy, 2009, Survival of coronaviruses in water and wastewater, Food Environ. Virol, 1, 10, 10.1007/s12560-008-9001-6
Corpuz, 2020, Viruses in wastewater: occurrence, abundance and detection methods, Sci. Total Environ., 745, 140910, 10.1016/j.scitotenv.2020.140910
Medema, 2020, Presence of SARS-coronavirus-2 RNA in sewage and correlation with reported COVID-19 prevalence in the early stage of the epidemic in The Netherlands, Environ. Sci. Technol. Lett., 7, 511, 10.1021/acs.estlett.0c00357
F. Cutrupi, M. Cadonna, S. Manara, P. Foladori, Surveillance of SARS-CoV-2 in Extensive Monitoring of Municipal Wastewater: Key Issues to Yield Reliable Results, (0273-1223 (Print)).
Rabenau, 2005, Stability and inactivation of SARS coronavirus, Med. Microbiol. Immunol., 194, 1, 10.1007/s00430-004-0219-0
Monteiro, 2022, 152914
Auerswald, 2021, Assessment of inactivation procedures for SARS-CoV-2, J. Gen. Virol., 102, 10.1099/jgv.0.001539
Rimoldi, 2020, Presence and infectivity of SARS-CoV-2 virus in wastewaters and rivers, Sci. Total Environ., 744, 140911, 10.1016/j.scitotenv.2020.140911
Wang, 2020, SARS-CoV-2 RNA detection of hospital isolation wards hygiene monitoring during the Coronavirus Disease 2019 outbreak in a Chinese hospital, Int. J. Infect. Dis., 94, 103, 10.1016/j.ijid.2020.04.024
Xiao, 2020, Infectious SARS-CoV-2 in feces of patient with severe COVID-19, Emerg. Infect. Dis., 26, 1920, 10.3201/eid2608.200681
Bivins, 2020, Persistence of SARS-CoV-2 in water and wastewater, Environ. Sci. Technol. Lett., 7, 937, 10.1021/acs.estlett.0c00730
A. Eftekhari, M.A.-O. Alipour, L. Chodari, S. Maleki Dizaj, M. Ardalan, M. Samiei, S. Sharifi, S.A.-O. Zununi Vahed, I. Huseynova, R. Khalilov, E.A.-O. Ahmadian, M.A.-O. Cucchiarini, A Comprehensive Review of Detection Methods for SARS-CoV-2. LID - 10.3390/microorganisms9020232 [doi] LID - 232, (2076-2607 (Print)).
2021
Dhamad, 2020, COVID-19: molecular and serological detection methods, PeerJ, 8, 10.7717/peerj.10180
2020
Cohen, 2016, STARD 2015 guidelines for reporting diagnostic accuracy studies: explanation and elaboration, BMJ Open, 6, 10.1136/bmjopen-2016-012799
L. Dortet, J.-B. Ronat, C. Vauloup-Fellous, C. Langendorf, D.-A. Mendels, C. Emeraud, S. Oueslati, D. Girlich, A. Chauvin, A. Afdjei, S. Bernabeu, S. Le Pape, R. Kallala, A. Rochard, C. Verstuyft, N. Fortineau, A.-M. Roque-Afonso, T. Naas, E. Hanson Kimberly, Evaluating 10 commercially available SARS-CoV-2 rapid serological tests by use of the STARD (standards for reporting of diagnostic accuracy studies) method, J. Clin. Microbiol. 59(2) e02342-20.
Zanoli, 2012, Isothermal amplification methods for the detection of nucleic acids in microfluidic devices, Biosensors, 3, 18, 10.3390/bios3010018
Chung, 2021, Validation of real-time RT-PCR for detection of SARS-CoV-2 in the early stages of the COVID-19 outbreak in the Republic of Korea, Sci. Rep., 11, 14817, 10.1038/s41598-021-94196-3
H.A.-O. Tombuloglu, H. Sabit, E.A.-O. Al-Suhaimi, R. Al Jindan, K.R. Alkharsah, Development of Multiplex Real-Time RT-PCR Assay for the Detection of SARS-CoV-2, (1932-6203 (Electronic)).
Obande, 2020, Current and future perspectives on isothermal nucleic acid amplification technologies for diagnosing infections, Infect. Drug Resist., 13, 455, 10.2147/IDR.S217571
Abudayyeh, 2016, C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector, Science, 353, aaf5573, 10.1126/science.aaf5573
Wu, 2014, Genome-wide binding of the CRISPR endonuclease Cas9 in mammalian cells, Nat. Biotechnol., 32, 670, 10.1038/nbt.2889
Kuscu, 2014, Genome-wide analysis reveals characteristics of off-target sites bound by the Cas9 endonuclease, Nat. Biotechnol., 32, 677, 10.1038/nbt.2916
O'Geen, 2015, A genome-wide analysis of Cas9 binding specificity using ChIP-seq and targeted sequence capture, Nucleic Acids Res., 43, 3389, 10.1093/nar/gkv137
Cao, 2021, CRISPR/Cas12a-mediated gold nanoparticle aggregation for colorimetric detection of SARS-CoV-2, Chem. Commun., 57, 6871, 10.1039/D1CC02546E
Li, 2018, Study of morphology and optical properties of gold nanoparticle aggregates under different pH conditions, Langmuir, 34, 10340, 10.1021/acs.langmuir.8b01457
Muto, 2021, Signal-amplified colorimetric biosensors using gold nanoparticles, Bunseki Kagaku, 70, 661, 10.2116/bunsekikagaku.70.661
Seo, 2020, Rapid detection of COVID-19 causative virus (SARS-CoV-2) in human nasopharyngeal swab specimens using field-effect transistor-based biosensor, ACS Nano, 14, 5135, 10.1021/acsnano.0c02823
Fathi-Hafshejani, 2021, Two-dimensional-material-based field-effect transistor biosensor for detecting COVID-19 virus (SARS-CoV-2), ACS Nano, 15, 11461, 10.1021/acsnano.1c01188
Yakoh, 2021, Paper-based electrochemical biosensor for diagnosing COVID-19: detection of SARS-CoV-2 antibodies and antigen, Biosens. Bioelectron., 176, 112912, 10.1016/j.bios.2020.112912
P. Ranjan, A. Singhal, S. Yadav, N. Kumar, S. Murali, S.K. Sanghi, R.A.-O. Khan, Rapid Diagnosis of SARS-CoV-2 Using Potential Point-Of-Care Electrochemical Immunosensor: toward the Future Prospects, (1563-5244 (Electronic)).
H. Zhao, F. Liu, W. Xie, T.C. Zhou, J. OuYang, L. Jin, H. Li, C.Y. Zhao, L. Zhang, J. Wei, Y.P. Zhang, C.P. Li, Ultrasensitive Supersandwich-type Electrochemical Sensor for SARS-CoV-2 from the Infected COVID-19 Patients Using a Smartphone, (0925-4005 (Print)).
Y.A.-O. Sakai-Tagawa, S.A.-O. Yamayoshi, P.J. Halfmann, Y. Kawaoka, Comparative Sensitivity of Rapid Antigen Tests for the Delta Variant (B.1.617.2) of SARS-CoV-2. LID - 10.3390/v13112183 [doi] LID - 2183, (1999-4915 (Electronic)).
J. Stohr, V.F. Zwart, G. Goderski, A. Meijer, C.R.S. Nagel-Imming, M.F.Q. Kluytmans-van den Bergh, S.D. Pas, F. van den Oetelaar, M. Hellwich, K.H. Gan, A. Rietveld, J.J. Verweij, J.L. Murk, W. van den Bijllaardt, J. Kluytmans, Self-testing for the Detection of SARS-CoV-2 Infection with Rapid Antigen Tests for People with Suspected COVID-19 in the Community. LID - S1198-743X(21)00434-1 [pii] LID - 10.1016/j.cmi.2021.07.039 [doi], (1469-0691 (Electronic)).
Lu, 2020, Primary concentration – the critical step in implementing the wastewater based epidemiology for the COVID-19 pandemic: a mini-review, Sci. Total Environ., 747, 141245, 10.1016/j.scitotenv.2020.141245
Prado, 2019, Performance of wastewater reclamation systems in enteric virus removal, Sci. Total Environ., 678, 33, 10.1016/j.scitotenv.2019.04.435
Qiu, 2016, A one-step centrifugal ultrafiltration method to concentrate enteric viruses from wastewater, J. Virol Methods, 237, 150, 10.1016/j.jviromet.2016.09.010
Sidhu, 2013, Sensitive detection of human adenovirus from small volume of primary wastewater samples by quantitative PCR, J. Virol Methods, 187, 395, 10.1016/j.jviromet.2012.11.002
Falman, 2019, Evaluation of secondary concentration methods for poliovirus detection in wastewater, Food Environ. Virol, 11, 20, 10.1007/s12560-018-09364-y
Ahmed, 2020, Comparison of virus concentration methods for the RT-qPCR-based recovery of murine hepatitis virus, a surrogate for SARS-CoV-2 from untreated wastewater, Sci. Total Environ., 739, 139960, 10.1016/j.scitotenv.2020.139960
Haramoto, 2018, A review on recent progress in the detection methods and prevalence of human enteric viruses in water, Water Res., 135, 168, 10.1016/j.watres.2018.02.004
Ye, 2016, Survivability, partitioning, and recovery of enveloped viruses in untreated municipal wastewater, Environ. Sci. Technol., 50, 5077, 10.1021/acs.est.6b00876
Kumar, 2020, First proof of the capability of wastewater surveillance for COVID-19 in India through detection of genetic material of SARS-CoV-2, Sci. Total Environ., 746, 141326, 10.1016/j.scitotenv.2020.141326
Wu, 2020, 2020
Bar-Or, 2020
Sherchan, 2020, First detection of SARS-CoV-2 RNA in wastewater in North America: a study in Louisiana, USA, Sci. Total Environ., 743, 140621, 10.1016/j.scitotenv.2020.140621
Nemudryi, 2020, Temporal detection and phylogenetic assessment of SARS-CoV-2 in municipal wastewater, Cell Rep. Med., 1, 100098, 10.1016/j.xcrm.2020.100098
S. Wurtzer, V. Marechal, J.M. Mouchel, Y. Maday, R. Teyssou, E. Richard, J.L. Almayrac, L. Moulin, Evaluation of Lockdown Effect on SARS-CoV-2 Dynamics through Viral Genome Quantification in Waste Water, Greater Paris, France, 5 March to 23 April 2020. LID - 10.2807/1560-7917.ES.2020.25.50.2000776 [doi] LID - 2000776, (1560-7917 (Electronic)).
Randazzo, 2020, SARS-CoV-2 RNA in wastewater anticipated COVID-19 occurrence in a low prevalence area, Water Res., 181, 10.1016/j.watres.2020.115942
Amdiouni, 2012, Recovery comparison of two virus concentration methods from wastewater using cell culture and real-time PCR, Curr. Microbiol., 65, 432, 10.1007/s00284-012-0174-8
Ibrahim, 2017, Detection of Aichi virus genotype B in two lines of wastewater treatment processes, Microb. Pathog., 109, 305, 10.1016/j.micpath.2017.06.001
Masclaux, 2013, High occurrence of hepatitis E virus in samples from wastewater treatment plants in Switzerland and comparison with other enteric viruses, Water Res., 47, 5101, 10.1016/j.watres.2013.05.050
Alexander, 2020, Concentration of infectious SARS-CoV-2 by polyethylene glycol precipitation, J. Virol Methods, 286, 113977, 10.1016/j.jviromet.2020.113977
Ahmed, 2020, Comparison of virus concentration methods for the RT-qPCR-based recovery of murine hepatitis virus, a surrogate for SARS-CoV-2 from untreated wastewater, Sci. Total Environ., 739, 139960, 10.1016/j.scitotenv.2020.139960
Corman, 2020, Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR, Euro Surveill., 25, 2000045, 10.2807/1560-7917.ES.2020.25.3.2000045
La Rosa, 2020, Coronavirus in water environments: occurrence, persistence and concentration methods - a scoping review, Water Res., 179, 10.1016/j.watres.2020.115899
Kitajima, 2020, SARS-CoV-2 in wastewater: state of the knowledge and research needs, Sci. Total Environ., 739, 10.1016/j.scitotenv.2020.139076
Fears, 2020, Persistence of severe acute respiratory syndrome coronavirus 2 in aerosol suspensions, Emerg. Infect. Dis., 26, 2168, 10.3201/eid2609.201806
Suwardi, 2021, The efficacy of plant-based Ionizers in removing aerosol for COVID-19 mitigation, Research, 2021, 2173642, 10.34133/2021/2173642
Guo, 2020, Aerosol and surface distribution of severe acute respiratory syndrome coronavirus 2 in hospital wards, Wuhan, China, Emerg. Infect. Dis., 26, 1586, 10.3201/eid2607.200885
Holshue, 2020
Wolfel, 2020, Virological assessment of hospitalized cases of coronavirus disease, Nature, 581, 465
Cheung, 2020, Gastrointestinal manifestations of SARS-CoV-2 infection and virus load in fecal samples from a Hong Kong cohort: systematic review and meta-analysis, Gastroenterology, 159, 81, 10.1053/j.gastro.2020.03.065
Wurtzer, 2020
Randazzo, 2020, SARS-CoV-2 RNA in wastewater anticipated COVID-19 occurrence in a low prevalence area, Water Res., 181, 115942, 10.1016/j.watres.2020.115942
Kataki, 2020, Concerns and strategies for wastewater treatment during COVID-19 pandemic to stop plausible transmission, Resources, Conserv. Recycl., 105156
Ahmed, 2021, SARS-CoV-2 RNA monitoring in wastewater as a potential early warning system for COVID-19 transmission in the community: a temporal case study, Sci. Total Environ., 761, 144216, 10.1016/j.scitotenv.2020.144216
Sattar, 2007, Hierarchy of susceptibility of viruses to environmental surface disinfectants: a predictor of activity against new and emerging viral pathogens, J. AOAC Int., 90, 1655
Polo, 2020, Making waves: wastewater-based epidemiology for COVID-19–approaches and challenges for surveillance and prediction, Water Res., 186, 116404, 10.1016/j.watres.2020.116404
Brainard, 2017, Censored regression modeling to predict virus inactivation in wastewaters, Environ. Sci. Technol., 51, 1795, 10.1021/acs.est.6b05190
Casanova, 2009, Survival of surrogate coronaviruses in water, Water Res., 43, 1893, 10.1016/j.watres.2009.02.002
Gundy, 2009, Survival of coronaviruses in water and wastewater, Food Environ. Virol., 1, 10, 10.1007/s12560-008-9001-6
Auer, 2014, The effects of frozen tissue storage conditions on the integrity of RNA and protein, Biotech. Histochem., 89, 518, 10.3109/10520295.2014.904927
De Wever, 2020, A combined RNA preservation and extraction protocol for gene expression studies in cacao beans, Front. Plant Sci., 11, 992, 10.3389/fpls.2020.00992
La Rosa, 2020, First detection of SARS-CoV-2 in untreated wastewaters in Italy, Sci. Total Environ., 736, 139652, 10.1016/j.scitotenv.2020.139652
M.A. Islam, S. Islam, M.E. Haque, M.M. Rahman, M.A. Uddin, A. Khasruzzaman, M.M. Sharif, M.R. Rahman, M.R. Amin, M.M. Ali, Thermal and pH Sensitivity of Avian Corona and Influenza Viruses: A Model Study for Inactivation of SARS-CoV-2 (COVID-19) and Other Flu Viruses.
La Rosa, 2020, Coronavirus in water environments: occurrence, persistence and concentration methods-A scoping review, Water Res., 179, 115899, 10.1016/j.watres.2020.115899
Cimolai, 2020, Environmental and decontamination issues for human coronaviruses and their potential surrogates, J. Med. Virol., 92, 2498, 10.1002/jmv.26170
Lai, 2005, Survival of severe acute respiratory syndrome coronavirus, Clin. Infect. Dis., 41, e67, 10.1086/433186
Cartwright, 1965, A cytopathic virus causing a transmissible gastroenteritis in swine: I. Isolation and properties, J. Comp. Pathol., 75
Chin, 2020, Stability of SARS-CoV-2 in different environmental conditions, Lanc. Microbe., 1
Hirano, 1978, Physico-chemical properties of mouse hepatitis virus (MHV-2) grown on DBT cell culture, Microbiol. Immunol., 22, 377, 10.1111/j.1348-0421.1978.tb00384.x
Darnell, 2004, Inactivation of the coronavirus that induces severe acute respiratory syndrome, SARS-CoV, J. Virol Methods, 121, 85, 10.1016/j.jviromet.2004.06.006
McClurkin, 1966, Studies on transmissible gastroenteritis of swine: II. Selected characteristics of a cytopathogenic virus common to five isolates from transmissible gastroenteritis, Can. J. Comp. Med. Vet. Sci., 30, 190
Cowen, 1971, vol. 333, 527
Alexander, 1975, Effect of pH on the growth and cytopathogenicity of avian infectious bronchitis virus in chick kidney cells, Arch. Virol., 49, 339, 10.1007/BF01318243
Cowen, 1975, pH stability studies with avian infectious bronchitis virus (Coronavirus) strains, J. Virol., 15, 430, 10.1128/jvi.15.2.430-432.1975
Stinski, 1969, Neutralizing antibody complex of infectious bronchitis virus, J. Immunol., 102, 720, 10.4049/jimmunol.102.3.720
Pocock, 1975, The influence of pH on the growth and stability of transmissible gastroenteritis virusin vitro, Arch. Virol., 49, 239, 10.1007/BF01317542
Hess, 1976, In vitro differentiation and pH sensitivity of field and cell culture-attentuated strains of transmissible gastroenteritis virus, Infect. Immun., 13, 1642, 10.1128/iai.13.6.1642-1646.1976
Sturman, 1990, Conformational change of the coronavirus peplomer glycoprotein at pH 8.0 and 37 degrees C correlates with virus aggregation and virus-induced cell fusion, J. Virol., 64, 3042, 10.1128/jvi.64.6.3042-3050.1990
Naddeo, 2020, Editorial Perspectives: 2019 novel coronavirus (SARS-CoV-2): what is its fate in urban water cycle and how can the water research community respond?, Environ. Sci.: Water Res. Technol., 6, 1213
Technologies, 2020
Wigginton, 2020
Meulemans, 1987
Wang, 2020, Disinfection technology of hospital wastes and wastewater: suggestions for disinfection strategy during coronavirus Disease 2019 (COVID-19) pandemic in China, Environ. Pollut., 262, 114665, 10.1016/j.envpol.2020.114665
Kühn, 2003, Disinfection of surfaces by photocatalytic oxidation with titanium dioxide and UVA light, Chemosphere, 53, 71, 10.1016/S0045-6535(03)00362-X
Zhang, 2016, Elimination of viruses from domestic wastewater: requirements and technologies, World J. Microbiol. Biotechnol., 32, 69, 10.1007/s11274-016-2018-3
Carraturo, 2020, Persistence of SARS-CoV-2 in the environment and COVID-19 transmission risk from environmental matrices and surfaces, Environ. Pollut., 265
Wigginton, 2015, Emerging investigators series: the source and fate of pandemic viruses in the urban water cycle, Environ. Sci.: Water Res. Technol., 1, 735
García-Ávila, 2020, Considerations on water quality and the use of chlorine in times of SARS-CoV-2 (COVID-19) pandemic in the community, Case Stud. Chem. Environ., 2
Yang, 2019, Drinking water and sanitation conditions are associated with the risk of malaria among children under five years old in sub-Saharan Africa: a logistic regression model analysis of national survey data, J. Adv. Res., 21, 1