Three-dimensional modeling of the microstructure evolution during metal additive manufacturing

Computational Materials Science - Tập 141 - Trang 207-220 - 2018
O. Zinovieva1, A. Zinoviev1, V. Ploshikhin1
1Airbus Endowed Chair for Integrative Simulation and Engineering of Materials and Processes, University of Bremen, Am Fallturm 1, TAB, 28359 Bremen, Germany

Tài liệu tham khảo

Wohlers, 2016 Brandt, 2017 Song, 2015, Differences in microstructure and properties between selective laser melting and traditional manufacturing for fabrication of metal parts: a review, Front. Mech. Eng., 10, 111, 10.1007/s11465-015-0341-2 Antonysamy, 2013, Effect of build geometry on the β-grain structure and texture in additive manufacture of Ti 6Al 4V by selective electron beam melting, Mater. Charact., 84, 153, 10.1016/j.matchar.2013.07.012 Al-Bermani, 2010, The origin of microstructural diversity, texture, and mechanical properties in electron beam melted Ti-6Al-4V, Metall. Mater. Trans. A, 41, 3422, 10.1007/s11661-010-0397-x Simonelli, 2014, On the texture formation of selective laser melted Ti-6Al-4V, Metall. Mater. Trans. A, 45, 2863, 10.1007/s11661-014-2218-0 Wang, 2006, Microstructure study of direct laser fabricated Ti alloys using powder and wire, Appl. Surf. Sci., 253, 1424, 10.1016/j.apsusc.2006.02.028 Wu, 2004, Microstructures of laser-deposited Ti-6Al-4V, Mater. Des., 25, 137, 10.1016/j.matdes.2003.09.009 Kelly, 2004, Microstructural evolution in laser-deposited multilayer Ti-6Al-4V builds: Part I. Microstructural characterization, Metall. Mater. Trans. A, 35, 1861, 10.1007/s11661-004-0094-8 Carroll, 2015, Anisotropic tensile behavior of Ti-6Al-4V components fabricated with directed energy deposition additive manufacturing, Acta Mater., 87, 309, 10.1016/j.actamat.2014.12.054 M. Simonelli, Y.Y. Tse, C. Tuck, Further Understanding of Ti-6Al-4V Selective Laser Melting Using Texture Analysis, in: Proceedings of 23rd Annual International Solid Freeform Fabrication Symposium, 2012 (Austin). Moat, 2009, Crystallographic texture and microstructure of pulsed diode laser-deposited Waspaloy, Acta Mater., 57, 1220, 10.1016/j.actamat.2008.11.004 Averyanova, 2011, Studying the influence of initial powder characteristics on the properties of final parts manufactured by the selective laser melting technology, Virtual Phys. Prototyp., 6, 215, 10.1080/17452759.2011.594645 Yadroitsev, 2011, Surface morphology in selective laser melting of metal powders, Phys. Proc., 12, 264, 10.1016/j.phpro.2011.03.034 I.A. Roberts, Investigation of Residual Stresses in the Laser Melting of Metal Powders in Additive Layer Manufacturing (Doctoral Thesis), Indiana University of Pennsylvania, University of Wolverhampton, Wolverhampton, 2012. Shiomi, 1999, Finite element analysis of melting and solidifying processes in laser rapid prototyping of metallic powders, Int. J. Mach. Tools Manuf., 39, 237, 10.1016/S0890-6955(98)00036-4 Badrossamay, 2007, Further studies in selective laser melting of stainless and tool steel powders, Int. J. Mach. Tools Manuf., 47, 779, 10.1016/j.ijmachtools.2006.09.013 Foroozmehr, 2016, Finite element simulation of selective laser melting process considering optical penetration depth of laser in powder bed, Mater. Des., 89, 255, 10.1016/j.matdes.2015.10.002 Ilin, 2014, Computer aided optimisation of the thermal management during laser beam melting process, Phys. Proc., 56, 390, 10.1016/j.phpro.2014.08.142 Rai, 2016, A coupled cellular automaton–lattice Boltzmann model for grain structure simulation during additive manufacturing, Comput. Mater. Sci., 124, 37, 10.1016/j.commatsci.2016.07.005 Rai, 2017, Simulation of grain structure evolution during powder bed based additive manufacturing, Additive Manuf., 13, 124, 10.1016/j.addma.2016.10.007 Rolchigo, 2017, Modeling of Ti-W solidification microstructures under additive manufacturing conditions, Metall. Mater. Trans. A, 48, 3606, 10.1007/s11661-017-4120-z Panwisawas, 2017, Mesoscale modelling of selective laser melting: thermal fluid dynamics and microstructural evolution, Comput. Mater. Sci., 126, 479, 10.1016/j.commatsci.2016.10.011 G. Marion, G. Cailletaud, C. Colin, M. Mazière, A finite element model for the simulation of direct metal deposition, in: ICALEO 2014 Congress Proceedings, 2014 (San Diego). Zhang, 2016, A coupled finite element cellular automaton model to predict thermal history and grain morphology of Ti-6Al-4V during direct metal deposition (DMD), Additive Manuf., 11, 32, 10.1016/j.addma.2016.04.004 Lopez-Botello, 2017, Two-dimensional simulation of grain structure growth within selective laser melted AA-2024, Mater. Des., 113, 369, 10.1016/j.matdes.2016.10.031 Rappaz, 1993, Probabilistic modelling of microstructure formation in solidification processes, Acta Metall. Mater., 41, 345, 10.1016/0956-7151(93)90065-Z Nie, 2014, Numerical modeling of microstructure evolution during laser additive manufacturing of a nickel-based superalloy, Acta Mater., 77, 85, 10.1016/j.actamat.2014.05.039 Sahoo, 2016, Phase-field simulation of microstructure evolution of Ti–6Al–4V in electron beam additive manufacturing process, Additive Manuf., 9, 14, 10.1016/j.addma.2015.12.005 Rodgers, 2017, Simulation of metal additive manufacturing microstructures using kinetic Monte Carlo, Comput. Mater. Sci., 135, 78, 10.1016/j.commatsci.2017.03.053 Zinoviev, 2016, Evolution of grain structure during laser additive manufacturing. Simulation by a cellular automata method, Mater. Des., 106, 321, 10.1016/j.matdes.2016.05.125 Zinoviev, 2016, On the numerical simulation of the microstructural evolution induced by laser additive manufacturing of steel products, AIP Conf. Proc., 1785, 040097, 10.1063/1.4967154 Thijs, 2010, A study of the microstructural evolution during selective laser melting of Ti–6Al–4V, Acta Mater., 58, 3303, 10.1016/j.actamat.2010.02.004 Wei, 2015, Evolution of solidification texture during additive manufacturing, Sci. Rep., 5, 16446, 10.1038/srep16446 Parry, 2016, Understanding the effect of laser scan strategy on residual stress in selective laser melting through thermo-mechanical simulation, Additive Manuf., 12, 1, 10.1016/j.addma.2016.05.014 M. Chiumenti, E. Neiva, E. Salsi, M. Cervera, S. Badia, C. Davies, Z. Chen, C. Lee, Numerical modelling and experimental validation in selective laser melting, 2017. <http://badia.rmee.upc.edu/preprints/art025.pdf> (24.07.17). Zhang, 2010, Select laser melting of W-Ni–Fe powders: simulation and experimental study, IJAMT, 51, 649 Karkhin, 2005, Effects of latent heat of fusion on thermal processes in laser welding of aluminium alloys, Sci. Technol. Weld. Join., 10, 597, 10.1179/174329305X19286 Goldak, 1984, A new finite element model for welding heat sources, Metall. Trans. B, 15, 299, 10.1007/BF02667333 Rosenthal, 1946, The theory of moving sources of heat and its application to metal treatments, ASME, 43, 849 S.N. Joshi, U.S. Dixit, Lasers Based Manufacturing, Springer India, New Delhi, 2015, http://dx.doi.org/10.1007/978-81-322-2352-8. Messler, 2004 D.Yu. Ermolenko, V.V. Golovko, Numerical modeling and prediction of weld microstructure in high-strength steel welding (review), Paton Welding J. 3 (2014) 2–10, http://dx.doi.org/10.15407/tpwj2014.03.01. Trivedi, 1994, Dendritic growth, Int. Mater. Rev., 39, 49, 10.1179/imr.1994.39.2.49 Flemings, 1974 Bermingham, 2008, Grain-refinement mechanisms in titanium alloys, JMR, 23, 97, 10.1557/JMR.2008.0002 Basak, 2016, Epitaxy and microstructure evolution in metal additive manufacturing, Annu. Rev. Mater. Res., 46, 9.1, 10.1146/annurev-matsci-070115-031728 Hashmi, 2014 Bermingham, 2015, Controlling the microstructure and properties of wire arc additive manufactured Ti–6Al–4V with trace boron additions, Acta Mater., 91, 289, 10.1016/j.actamat.2015.03.035 J. von Neumann, The general and logical theory of automata, in: L.A. Jeffress (Ed.), Cerebral mechanisms in behavior – The Hixon symposium, 1948, (Pasadena), John Wiley and Sons, Inc., New York, 1951. Zaitsev, 2016, A generalized neighborhood for cellular automata, Theor. Comput. Sci., 666, 21, 10.1016/j.tcs.2016.11.002 Smolin, 2016, Probabilistic approach for analysis of strength of ceramics with different porous structure based on movable cellular automaton modeling, Proc. Struct. Integrity, 2, 2742, 10.1016/j.prostr.2016.06.342 Dmitriev, 2016, Influence of the size and concentration of soft-phase inclusion agglomerates on ceramic specimen strength, Phys. Mesomech., 19, 182, 10.1134/S1029959916020119 Romanova, 2017, Micro-and mesomechanical aspects of deformation-induced surface roughening in polycrystalline titanium, Mater. Sci. Eng. A., 697, 248, 10.1016/j.msea.2017.05.029 Kurz, 1986, Theory of microstructural development during rapid solidification, Acta Metall., 34, 823, 10.1016/0001-6160(86)90056-8 Gandin, 1993, Three-dimensional probabilistic simulation of solidification grain structures: application to superalloy precision castings, Metall. Trans. A, 24, 467, 10.1007/BF02657334 Gandin, 1997, A 3D cellular automaton algorithm for the prediction of dendritic grain growth, Acta Mater., 45, 2187, 10.1016/S1359-6454(96)00303-5 Ping, 2006, Numerical simulation of microstructure evolution of Ti-6Al-4V alloy in vertical centrifugal casting, Mater. Sci. Eng. A, 426, 240, 10.1016/j.msea.2006.04.014 Marsaglia, 1972, Choosing a point from the surface of a sphere, Ann. Math. Statistics, 43, 645, 10.1214/aoms/1177692644 Reuther, 2014, Perspectives for cellular automata for the simulation of dendritic solidification – a review, Comp. Mater. Sci., 95, 213, 10.1016/j.commatsci.2014.07.037 Zhan, 2008, Cellular automaton simulation of grain growth with different orientation angles during solidification process, J. Mater. Process. Technol., 208, 1, 10.1016/j.jmatprotec.2007.12.130 Zhao, 2013, A three-dimensional cellular automata model for dendrite growth with various crystallographic orientations during solidification, Metall. Mater. Trans. B, 45, 719, 10.1007/s11663-013-9960-3 Wang, 2003, A model of solidification microstructures in nickel-based superalloys: predicting primary dendrite spacing selection, Acta Mater., 51, 2971, 10.1016/S1359-6454(03)00110-1 Boivineau, 2006, Thermophysical properties of solid and liquid Ti-6Al-4V (TA6V) alloy, Int. J. Thermophys., 27, 507, 10.1007/PL00021868