Three-dimensional modeling of the microstructure evolution during metal additive manufacturing
Tài liệu tham khảo
Wohlers, 2016
Brandt, 2017
Song, 2015, Differences in microstructure and properties between selective laser melting and traditional manufacturing for fabrication of metal parts: a review, Front. Mech. Eng., 10, 111, 10.1007/s11465-015-0341-2
Antonysamy, 2013, Effect of build geometry on the β-grain structure and texture in additive manufacture of Ti 6Al 4V by selective electron beam melting, Mater. Charact., 84, 153, 10.1016/j.matchar.2013.07.012
Al-Bermani, 2010, The origin of microstructural diversity, texture, and mechanical properties in electron beam melted Ti-6Al-4V, Metall. Mater. Trans. A, 41, 3422, 10.1007/s11661-010-0397-x
Simonelli, 2014, On the texture formation of selective laser melted Ti-6Al-4V, Metall. Mater. Trans. A, 45, 2863, 10.1007/s11661-014-2218-0
Wang, 2006, Microstructure study of direct laser fabricated Ti alloys using powder and wire, Appl. Surf. Sci., 253, 1424, 10.1016/j.apsusc.2006.02.028
Wu, 2004, Microstructures of laser-deposited Ti-6Al-4V, Mater. Des., 25, 137, 10.1016/j.matdes.2003.09.009
Kelly, 2004, Microstructural evolution in laser-deposited multilayer Ti-6Al-4V builds: Part I. Microstructural characterization, Metall. Mater. Trans. A, 35, 1861, 10.1007/s11661-004-0094-8
Carroll, 2015, Anisotropic tensile behavior of Ti-6Al-4V components fabricated with directed energy deposition additive manufacturing, Acta Mater., 87, 309, 10.1016/j.actamat.2014.12.054
M. Simonelli, Y.Y. Tse, C. Tuck, Further Understanding of Ti-6Al-4V Selective Laser Melting Using Texture Analysis, in: Proceedings of 23rd Annual International Solid Freeform Fabrication Symposium, 2012 (Austin).
Moat, 2009, Crystallographic texture and microstructure of pulsed diode laser-deposited Waspaloy, Acta Mater., 57, 1220, 10.1016/j.actamat.2008.11.004
Averyanova, 2011, Studying the influence of initial powder characteristics on the properties of final parts manufactured by the selective laser melting technology, Virtual Phys. Prototyp., 6, 215, 10.1080/17452759.2011.594645
Yadroitsev, 2011, Surface morphology in selective laser melting of metal powders, Phys. Proc., 12, 264, 10.1016/j.phpro.2011.03.034
I.A. Roberts, Investigation of Residual Stresses in the Laser Melting of Metal Powders in Additive Layer Manufacturing (Doctoral Thesis), Indiana University of Pennsylvania, University of Wolverhampton, Wolverhampton, 2012.
Shiomi, 1999, Finite element analysis of melting and solidifying processes in laser rapid prototyping of metallic powders, Int. J. Mach. Tools Manuf., 39, 237, 10.1016/S0890-6955(98)00036-4
Badrossamay, 2007, Further studies in selective laser melting of stainless and tool steel powders, Int. J. Mach. Tools Manuf., 47, 779, 10.1016/j.ijmachtools.2006.09.013
Foroozmehr, 2016, Finite element simulation of selective laser melting process considering optical penetration depth of laser in powder bed, Mater. Des., 89, 255, 10.1016/j.matdes.2015.10.002
Ilin, 2014, Computer aided optimisation of the thermal management during laser beam melting process, Phys. Proc., 56, 390, 10.1016/j.phpro.2014.08.142
Rai, 2016, A coupled cellular automaton–lattice Boltzmann model for grain structure simulation during additive manufacturing, Comput. Mater. Sci., 124, 37, 10.1016/j.commatsci.2016.07.005
Rai, 2017, Simulation of grain structure evolution during powder bed based additive manufacturing, Additive Manuf., 13, 124, 10.1016/j.addma.2016.10.007
Rolchigo, 2017, Modeling of Ti-W solidification microstructures under additive manufacturing conditions, Metall. Mater. Trans. A, 48, 3606, 10.1007/s11661-017-4120-z
Panwisawas, 2017, Mesoscale modelling of selective laser melting: thermal fluid dynamics and microstructural evolution, Comput. Mater. Sci., 126, 479, 10.1016/j.commatsci.2016.10.011
G. Marion, G. Cailletaud, C. Colin, M. Mazière, A finite element model for the simulation of direct metal deposition, in: ICALEO 2014 Congress Proceedings, 2014 (San Diego).
Zhang, 2016, A coupled finite element cellular automaton model to predict thermal history and grain morphology of Ti-6Al-4V during direct metal deposition (DMD), Additive Manuf., 11, 32, 10.1016/j.addma.2016.04.004
Lopez-Botello, 2017, Two-dimensional simulation of grain structure growth within selective laser melted AA-2024, Mater. Des., 113, 369, 10.1016/j.matdes.2016.10.031
Rappaz, 1993, Probabilistic modelling of microstructure formation in solidification processes, Acta Metall. Mater., 41, 345, 10.1016/0956-7151(93)90065-Z
Nie, 2014, Numerical modeling of microstructure evolution during laser additive manufacturing of a nickel-based superalloy, Acta Mater., 77, 85, 10.1016/j.actamat.2014.05.039
Sahoo, 2016, Phase-field simulation of microstructure evolution of Ti–6Al–4V in electron beam additive manufacturing process, Additive Manuf., 9, 14, 10.1016/j.addma.2015.12.005
Rodgers, 2017, Simulation of metal additive manufacturing microstructures using kinetic Monte Carlo, Comput. Mater. Sci., 135, 78, 10.1016/j.commatsci.2017.03.053
Zinoviev, 2016, Evolution of grain structure during laser additive manufacturing. Simulation by a cellular automata method, Mater. Des., 106, 321, 10.1016/j.matdes.2016.05.125
Zinoviev, 2016, On the numerical simulation of the microstructural evolution induced by laser additive manufacturing of steel products, AIP Conf. Proc., 1785, 040097, 10.1063/1.4967154
Thijs, 2010, A study of the microstructural evolution during selective laser melting of Ti–6Al–4V, Acta Mater., 58, 3303, 10.1016/j.actamat.2010.02.004
Wei, 2015, Evolution of solidification texture during additive manufacturing, Sci. Rep., 5, 16446, 10.1038/srep16446
Parry, 2016, Understanding the effect of laser scan strategy on residual stress in selective laser melting through thermo-mechanical simulation, Additive Manuf., 12, 1, 10.1016/j.addma.2016.05.014
M. Chiumenti, E. Neiva, E. Salsi, M. Cervera, S. Badia, C. Davies, Z. Chen, C. Lee, Numerical modelling and experimental validation in selective laser melting, 2017. <http://badia.rmee.upc.edu/preprints/art025.pdf> (24.07.17).
Zhang, 2010, Select laser melting of W-Ni–Fe powders: simulation and experimental study, IJAMT, 51, 649
Karkhin, 2005, Effects of latent heat of fusion on thermal processes in laser welding of aluminium alloys, Sci. Technol. Weld. Join., 10, 597, 10.1179/174329305X19286
Goldak, 1984, A new finite element model for welding heat sources, Metall. Trans. B, 15, 299, 10.1007/BF02667333
Rosenthal, 1946, The theory of moving sources of heat and its application to metal treatments, ASME, 43, 849
S.N. Joshi, U.S. Dixit, Lasers Based Manufacturing, Springer India, New Delhi, 2015, http://dx.doi.org/10.1007/978-81-322-2352-8.
Messler, 2004
D.Yu. Ermolenko, V.V. Golovko, Numerical modeling and prediction of weld microstructure in high-strength steel welding (review), Paton Welding J. 3 (2014) 2–10, http://dx.doi.org/10.15407/tpwj2014.03.01.
Trivedi, 1994, Dendritic growth, Int. Mater. Rev., 39, 49, 10.1179/imr.1994.39.2.49
Flemings, 1974
Bermingham, 2008, Grain-refinement mechanisms in titanium alloys, JMR, 23, 97, 10.1557/JMR.2008.0002
Basak, 2016, Epitaxy and microstructure evolution in metal additive manufacturing, Annu. Rev. Mater. Res., 46, 9.1, 10.1146/annurev-matsci-070115-031728
Hashmi, 2014
Bermingham, 2015, Controlling the microstructure and properties of wire arc additive manufactured Ti–6Al–4V with trace boron additions, Acta Mater., 91, 289, 10.1016/j.actamat.2015.03.035
J. von Neumann, The general and logical theory of automata, in: L.A. Jeffress (Ed.), Cerebral mechanisms in behavior – The Hixon symposium, 1948, (Pasadena), John Wiley and Sons, Inc., New York, 1951.
Zaitsev, 2016, A generalized neighborhood for cellular automata, Theor. Comput. Sci., 666, 21, 10.1016/j.tcs.2016.11.002
Smolin, 2016, Probabilistic approach for analysis of strength of ceramics with different porous structure based on movable cellular automaton modeling, Proc. Struct. Integrity, 2, 2742, 10.1016/j.prostr.2016.06.342
Dmitriev, 2016, Influence of the size and concentration of soft-phase inclusion agglomerates on ceramic specimen strength, Phys. Mesomech., 19, 182, 10.1134/S1029959916020119
Romanova, 2017, Micro-and mesomechanical aspects of deformation-induced surface roughening in polycrystalline titanium, Mater. Sci. Eng. A., 697, 248, 10.1016/j.msea.2017.05.029
Kurz, 1986, Theory of microstructural development during rapid solidification, Acta Metall., 34, 823, 10.1016/0001-6160(86)90056-8
Gandin, 1993, Three-dimensional probabilistic simulation of solidification grain structures: application to superalloy precision castings, Metall. Trans. A, 24, 467, 10.1007/BF02657334
Gandin, 1997, A 3D cellular automaton algorithm for the prediction of dendritic grain growth, Acta Mater., 45, 2187, 10.1016/S1359-6454(96)00303-5
Ping, 2006, Numerical simulation of microstructure evolution of Ti-6Al-4V alloy in vertical centrifugal casting, Mater. Sci. Eng. A, 426, 240, 10.1016/j.msea.2006.04.014
Marsaglia, 1972, Choosing a point from the surface of a sphere, Ann. Math. Statistics, 43, 645, 10.1214/aoms/1177692644
Reuther, 2014, Perspectives for cellular automata for the simulation of dendritic solidification – a review, Comp. Mater. Sci., 95, 213, 10.1016/j.commatsci.2014.07.037
Zhan, 2008, Cellular automaton simulation of grain growth with different orientation angles during solidification process, J. Mater. Process. Technol., 208, 1, 10.1016/j.jmatprotec.2007.12.130
Zhao, 2013, A three-dimensional cellular automata model for dendrite growth with various crystallographic orientations during solidification, Metall. Mater. Trans. B, 45, 719, 10.1007/s11663-013-9960-3
Wang, 2003, A model of solidification microstructures in nickel-based superalloys: predicting primary dendrite spacing selection, Acta Mater., 51, 2971, 10.1016/S1359-6454(03)00110-1
Boivineau, 2006, Thermophysical properties of solid and liquid Ti-6Al-4V (TA6V) alloy, Int. J. Thermophys., 27, 507, 10.1007/PL00021868