Feasibility of the EDICAM camera for runaway electron detection in JT-60SA disruptions

Fusion Engineering and Design - Tập 195 - Trang 113940 - 2023
Soma Olasz1,2, Mathias Hoppe3, Tamás Szepesi2, Kensaku Kamiya4, Peter Balazs1,2, Gergo I. Pokol1,2
1Institute of Nuclear Techniques, Faculty of Natural Sciences, Budapest University of Technology and Economics, Muegyetem rakpart 3., Budapest, 1111, Hungary
2Fusion Plasma Physics Department, Centre For Energy Research, Konkoly-Thege Miklós út 29-33, Budapest, 1121, Hungary
3Ecole Polytechnique Fédérale de Lausanne, Swiss Plasma Center, Lausanne, CH-1015, Switzerland
4National Institutes for Quantum and Radiological Science and Technology, Naka, 311-0193, Japan

Tài liệu tham khảo

Paz-Soldan, 2021, A novel path to runaway electron mitigation via deuterium injection and current-driven MHD instability, Nucl. Fusion, 61, 10.1088/1741-4326/ac2a69 Reux, 2021, Demonstration of safe termination of megaampere relativistic electron beams in Tokamaks, Phys. Rev. Lett., 126, 10.1103/PhysRevLett.126.175001 Pautasso, 2020, The ASDEX upgrade team and the eurofusion MST1 team, Generation and dissipation of runaway electrons in ASDEX upgrade experiments, Nucl. Fusion, 60, 10.1088/1741-4326/ab9563 Hollmann, 2015, Measurement of runaway electron energy distribution function during high-Z gas injection into runaway electron plateaus in DIII-D, Phys. Plasmas, 22, 10.1063/1.4921149 Zeng, 2013, Experimental observation of a magnetic-turbulence threshold for runaway-electron generation in the TEXTOR tokamak, Phys. Rev. Lett., 110, 10.1103/PhysRevLett.110.235003 Boozer, 2017, Runaway electrons and ITER, Nucl. Fusion, 57, 10.1088/1741-4326/aa6355 Lehnen, 2015, Disruptions in ITER and strategies for their control and mitigation, J. Nucl. Mater., 463, 39, 10.1016/j.jnucmat.2014.10.075 Rosenbluth, 1997, Theory for avalanche of runaway electrons in tokamaks, Nucl. Fusion, 37, 1355, 10.1088/0029-5515/37/10/I03 Smith, 2006, Runaway electrons and the evolution of the plasma current in tokamak disruptions, Phys. Plasmas, 13, 10.1063/1.2358110 Pace, 2016, Gamma ray imager on the DIII-D tokamak, Rev. Sci. Instrum., 87, 10.1063/1.4945566 Cerovsky, 2022, Progress in HXR diagnostics at GOLEM and COMPASS tokamaks, J. Instrum., 17, C01033, 10.1088/1748-0221/17/01/C01033 Wongrach, 2014, Measurement of synchrotron radiation from runaway electrons during the TEXTOR tokamak disruptions, Nucl. Fusion, 54, 10.1088/0029-5515/54/4/043011 Popović, 2021, Polarized imaging of visible synchrotron emission from runaway electron plateaus in DIII-D, Phys. Plasmas, 28, 10.1063/5.0058927 Tinguely, 2018, Spatiotemporal evolution of runaway electrons from synchrotron images in Alcator C-Mod, Plasma Phys. Control. Fusion, 60, 10.1088/1361-6587/aae6ba Hoppe, 2018, Interpretation of runaway electron synchrotron and bremsstrahlung images, Nucl. Fusion, 58, 10.1088/1741-4326/aaae15 Wijkamp, 2021, Tomographic reconstruction of the runaway distribution function in TCV using multispectral synchrotron images, Nucl. Fusion, 61, 10.1088/1741-4326/abe8af Carbajal, 2017, On the synchrotron emission in kinetic simulations of runaway electrons in magnetic confinement fusion plasmas, Plasma Phys. Control. Fusion, 59, 10.1088/1361-6587/aa883e Hoppe, 2018, SOFT: a synthetic synchrotron diagnostic for runaway electrons, Nucl. Fusion, 58, 10.1088/1741-4326/aa9abb Giruzzi, 2019, Advances in the physics studies for the JT-60SA tokamak exploitation and research plan, Plasma Phys. Control. Fusion, 62, 10.1088/1361-6587/ab4771 Szepesi, 2020, Wide-angle visible video diagnostics for JT-60SA utilizing EDICAM, Fusion Eng. Des., 153 Hoppe, 2021, DREAM: A fluid-kinetic framework for tokamak disruption runaway electron simulations, Comput. Phys. Comm., 268 Zoletnik, 2013, EDICAM (event detection intelligent camera), Fusion Eng. Des., 88, 1405, 10.1016/j.fusengdes.2013.01.054 Zoletnik, 2018, First results of the multi-purpose real-time processing video camera system on the wendelstein 7-X stellarator and implications for future devices, Rev. Sci. Instrum., 1 Dreicer, 1960, Electron and ion runaway in a fully ionized gas, II, Phys. Rev., 117, 329, 10.1103/PhysRev.117.329 Lao, 1985, Reconstruction of current profile parameters and plasma shapes in tokamaks, Nucl. Fusion, 25, 1611, 10.1088/0029-5515/25/11/007 Guillemaut, 2017, Main chamber wall plasma loads in JET-ITER-like wall at high radiated fraction, Nucl. Mater. Energy, 12, 234, 10.1016/j.nme.2017.02.010 Takechi, 2019, Disruption simulations for JT-60SA design and construction, Fusion Eng. Des., 146, 0920 Hoppe, 2021, The ASDEX upgrade team and the eurofusion MST1 team, spatiotemporal analysis of the runaway distribution function from synchrotron images in an ASDEX upgrade disruption, J. Plasma Phys., 87, 10.1017/S002237782000152X Hesslow, 2018, Effect of partially ionized impurities and radiation on the effective critical electric field for runaway generation, Plasma Phys. Control. Fusion, 60, 10.1088/1361-6587/aac33e