Xem xét lại Lý thuyết Thống nhất về Sự chấp nhận và Sử dụng Công nghệ (UTAUT): Hướng tới một Mô hình Lý thuyết Được Sửa đổi

Information Systems Frontiers - Tập 21 - Trang 719-734 - 2017
Yogesh K. Dwivedi1, Nripendra P. Rana1, Anand Jeyaraj2, Marc Clement3, Michael D. Williams3
1Emerging Markets Research Centre (EMaRC), School of Management, Swansea University Bay Campus, Swansea, UK
2Raj Soin College of Business, Wright State University, Dayton, USA
3School of Management, Swansea University, Bay Campus, Swansea, UK

Tóm tắt

Dựa trên một đánh giá phê phán về Lý thuyết Thống nhất về Sự chấp nhận và Sử dụng Công nghệ (UTAUT), nghiên cứu này trước tiên đã hình thành một mô hình lý thuyết thay thế để giải thích sự chấp nhận và sử dụng các hệ thống thông tin (IS) và công nghệ thông tin (IT) đổi mới. Mô hình lý thuyết được sửa đổi sau đó đã được kiểm tra thực nghiệm bằng cách sử dụng một sự kết hợp giữa phân tích tổng hợp và các kỹ thuật mô hình phương trình cấu trúc (MASEM). Phân tích tổng hợp dựa trên 1600 quan sát về 21 mối quan hệ được mã hóa từ 162 nghiên cứu trước đó về sự chấp nhận và sử dụng IS/IT. Phân tích SEM cho thấy rằng thái độ: là trung tâm của các ý định hành vi và hành vi sử dụng, đã trung gian một phần các ảnh hưởng của các cấu trúc ngoại sinh lên các ý định hành vi, và có ảnh hưởng trực tiếp đến hành vi sử dụng. Nhiều hệ quả cho lý thuyết và thực tiễn đã được rút ra dựa trên các phát hiện.

Từ khóa

#Lý thuyết Thống nhất #Sự chấp nhận công nghệ #Mô hình lý thuyết #Phân tích tổng hợp #Mô hình phương trình cấu trúc

Tài liệu tham khảo

Aboelmaged, M. G. (2010). Predicting e-procurement adoption in a developing country: An empirical integration of technology acceptance model and theory of planned behaviour. Industrial Management & Data Systems, 110(3), 392–414. Abubakre, M., Ravishankar, M. N., & Coombs, C. R. (2015). The role of formal controls in facilitating IS diffusion. Information Management, 52(5), 599–609. Adams, D. A., Nelson, R. R., & Todd, P. A. (1992). Perceived usefulness, ease of use, and usage of information technology: A replication. MIS Quarterly, 16(2), 227–247. Aggelidis, V. P., & Chatzoglou, P. D. (2009). Using a modified technology acceptance model in hospitals. International Journal of Medical Informatics, 78(2), 115–126. Ajzen, I. (1991). The theory of planned behavior. Organizational Behavior and Human Decision Processes, 50(2), 179–211. Ajzen, I. (2001). Nature and operation of attitudes. Annual Review of Psychology, 52(1), 27–58. Ajzen, I., & Fishbein, M.M. (1980). Understanding attitudes and predicting social behavior. Eaglewood Cliffs: Prentice-Hall. Alshare, K. A., & Lane, P. L. (2011). Predicting student-perceived learning outcomes and satisfaction in ERP courses: An empirical investigation. Communications of the Association for Information Systems, 28(1), 571–584. Arbuckle, J. L., & Wothke, W. (1999). AMOS 4.0 user’s guide. Chicago: Small Waters. Bagozzi, R. P. (1981). Attitudes, intentions, and behavior: A test of some key hypotheses. Journal of Personality and Social Psychology, 41(4), 607–627. Bajaj, A., & Nidumolu, S. R. (1998). A feedback model to understand information system usage. Information Management, 33(4), 213–224. Bandura, A. (1986). Social foundations of thought and action: A social cognitive theory. Prentice Hall, Englewood Cliffs, 1986. Bandyopadhyay, K., & Barnes, C. (2012). An analysis of factors affecting user acceptance of ERP Systems in the United States. International Journal of Human Capital and Information Technology Professionals, 3(1), 1–14. Bentler, P. M. (1990). Comparative fit indices in structural models. Psychological Bulletin, 107(2), 238–246. Bentler, P. M., & Bonett, D. G. (1980). Significance tests and goodness of fit in the analysis of covariance structures. Psychological Bulletin, 88(3), 588–606. Bhattarai, S., Zhao, Z., & Crespi, N. (2010). Consumer mashups: End-user perspectives and acceptance model. In Proceedings of the 12th International Conference on Information Integration and Web-based Applications & Services, 930–933. Bobbitt, L. M., & Dabholkar, P. A. (2001). Integrating attitudinal theories to understand and predict use of technology-based self-service. The Internet as an illustration. International Journal of Service Industry Management, 12(5), 423–450. Byrne, B. M. (2010). Structural equation modelling with AMOS: Basic concepts, applications, and programming (Second ed.). New York: Multivariate Application Series, Routledge. Carr, J. Z., Schmidt, A. M., Ford, J. K., & DeShon, R. P. (2003). Climate perceptions matter: A meta-analytic path analysis relating molar climate, cognitive and affective states, and individual level work outcomes. Journal of Applied Psychology, 88(4), 605–619. Carter, L., & Schaupp, L.C. (2008). Efficacy and acceptance in E-File adoption. Fourteenth Americas Conference on Information Systems, Toronto, ON, Canada August 14th–17th, 2008. Chen, L. L., Kuan, C. J., Lee, Y. H., & Huang, H. L. (2011). Applicability of the UTAUT model in playing online game through mobile phones: Moderating effects of user experience. IEEE International Conference on Technology Management, San Jose, CA, USA, 27-30 June 2011. 625–629. doi:10.1109/ITMC.2011.5996035. Chen, M. F., & Lu, M. T. Y. (2011). Modeling e-coupon proneness as a mediator in the extended TPB model to predict consumers’ usage intentions. Internet Research, 21(5), 508–526. Cheung, M. W. L., & Chan, W. (2005). Meta-analytic structural equation modeling: A two-stage approach. Psychological Methods, 10(1), 40–64. Chiu, Y. T. H., Lee, W. I., Liu, C. C., & Liu, L. Y. (2012). Internet lottery commerce: An integrated view of online sport lottery adoption. Journal of Internet Commerce, 11(1), 68–80. Chong, A. Y. L. (2013). Predicting m-commerce adoption determinants: A neural network approach. Expert Systems with Applications, 40, 523–530. Compeau, D. R., & Higgins, C. A. (1995). Computer self-efficacy: Development of a measure and initial test. MIS Quarterly, 19(2), 189–211. Davis, F.D. (1986). A technology acceptance model for empirically testing new end-user information systems: Theory and results. Doctoral Dissertation, Sloan School of Management, Massachusetts Institute of Technology. Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, 13(3), 318–339. Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1989). User acceptance of computer technology: A comparison of two theoretical models. Management Science, 35(8), 982–1003. Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1992). Extrinsic and Intrinsic motivation to use computers in the workplace. Journal of Applied Social Psychology, 22(14), 1111–1132. DeLone, W. H., & McLean, E. R. (1992). Information systems success: The quest for the dependent variable. Information Systems Research, 3(1), 60–95. Denison, D. R., Hart, S. L., & Kahn, J. A. (1996). From chimneys to cross-functional teams: Developing and validating a diagnostic model. Academy of Management Journal, 39(4), 1005–1024. Dennis, A. R., Wixom, B. H., & Vandenberg, R. J. (2001). Understanding fit and appropriation effects in group support systems via meta-analysis. MIS Quarterly, 25(2), 167–193. Duyck, P., Pynoo, B., Devolder, P., Voet, T., Adang, L., Ovaere, D., & Vercruysse, J. (2010). Monitoring the PACS implementation process in a large university hospital-discrepancies between radiologists and physicians. Journal of Digital Imaging, 23(1), 73–80. Dwivedi, Y. K., Janssen, M., Slade, E. L., Rana, N. P., Weerakkody, V., Millard, J., Hidders, J., & Snijders, D. (2016). Driving innovation through big open linked data (BOLD): Exploring antecedents using interpretive structural modelling. Information Systems Frontiers, 19(2), 197–212. doi:10.1007/s10796-016-9675-5. Dwivedi, Y.K., Rana, N.P., Janssen, M., Lal, B., Williams, M.D., & Clement, M. (2017). An empirical validation of a unified model of electronic government adoption (UMEGA). Government Information Quarterly, 1–20. doi:10.1016/j.giq.2017.03.001. Dwivedi, Y. K., Wastell, D., Laumer, S., Henriksen, H. Z., Myers, M. D., Bunker, D., et al. (2015). Research on information systems failures and successes: Status update and future directions. Information Systems Frontiers, 17(1), 143–157. Eckhardt, A., Laumer, S., & Weitzel, T. (2009). Who influences whom? Analyzing workplace referents' social influence on IT adoption and non-adoption. Journal of Information Technology, 24(1), 11–24. Fadel, K.J. (2007). Infusion of information systems: The role of adaptation and individual cognitions. PhD Dissertation, The University of Arizona, USA. Fishbein, M., & Ajzen, I. (1975). Belief, attitude, intention, and behavior: An introduction to theory and research. Reading: Addison-Wesley Publication Company. Foon, Y. S., & Fah, B. C. Y. (2011). Internet banking adoption in Kuala Lumpur: An application of UTAUT model. International Journal of Business and Management, 6(4), 161–167. George, J. F. (2004). The theory of planned behavior and Internet purchasing. Internet Research, 14(3), 198–212. Glass, G. V. (1976). Primary, secondary, and meta-analysis of research. Educational Researcher, 5(9), 3–8. Goodhue, D. L., & Thompson, R. L. (1995). Task-technology fit and individual performance. MIS Quarterly, 19(2), 213–236. Gupta, B., Dasgupta, S., & Gupta, A. (2008). Adoption of ICT in a government organization in a developing country: An empirical study. The Journal of Strategic Information Systems, 17(2), 140–154. Harrison, D. A., Mykytyn, P. P., & Riemenschneider, C. K. (1997). Executive decisions about adoption of information Technology in Small Business: Theory and empirical tests. Information Systems Research, 8(2), 171–195. Hu, P. J., Chau, P. Y., Sheng, O. R. L., & Tam, K. Y. (1999). Examining the technology acceptance model using physician acceptance of telemedicine technology. Journal of Management Information Systems, 16(2), 91–112. Hunter, J. E., & Schmidt, F. (1990). Methods of meta-analysis: Correcting error and bias in research findings. Newbury Park: Sage Publications. Hunter, J. E., Schmidt, F., & Jackson, G. B. (1982). Meta-analysis: Cumulating research findings across studies. Beverly Hills: Sage. Hwang, M. I. (1996). The use of meta-analysis in MIS research: Promises and problems. The DATA BASE for Advances in Information Systems, 27(3), 35–48. Igbaria, M., Parasuraman, S., & Baroudi, J. J. (1996). A motivational model of microcomputer usage. Journal of Management Information Systems, 13(1), 127–143. Jackson, C. M., Chow, S., & Leitch, R. A. (1997). Toward an understanding of the behavioral intention to use an information system. Decision Sciences, 28(2), 357–389. Joseph, D., Ng, K. Y., Koh, C., & Ang, S. (2007). Turnover of information technology professionals: A narrative review, meta-analytic structural equation modeling, and model development. MIS Quarterly, 31(3), 547–577. Khalilzadeh, J., Ozturk, A. B., & Bilgihan, A. (2017). Security-related factors in extended UTAUT model for NFC based mobile payment in the restaurant industry. Computers in Human Behavior, 70, 460–474. Kim, Y. J., Chun, J. U., & Song, J. (2009). Investigating the role of attitude in technology acceptance from an attitude strength perspective. International Journal of Information Management, 29(1), 67–77. Kim, T. G., Lee, J. H., & Law, R. (2008). An empirical examination of the acceptance behaviour of hotel front office systems: An extended technology acceptance model. Tourism Management, 29(3), 500–513. Kim, T. T., Suh, Y. K., Lee, G., & Choi, B. G. (2010). Modelling roles of task-technology fit and self-efficacy in hotel employees' usage behaviours of hotel information systems. International Journal of Tourism Research, 12(6), 709–725. King, W. R., & He, J. (2006). A meta-analysis of the technology acceptance model. Information Management, 43(6), 740–755. Knutsen, L.A. (2005). M-service expectancies and attitudes: Linkages and effects of first impressions. Proceedings of the 38 th Hawaii International Conference on System Sciences. HI, USA, 6th January 2005, doi:10.1109/HICSS.2005.395. Koh, C. E., Prybutok, V. R., Ryan, S. D., & Wu, Y. A. (2010). A model for mandatory use of software technologies: An integrative approach by applying multiple levels of abstraction of informing science. Informing Science: The International Journal of an Emerging Transdiscipline, 13, 177–203. Lee, Y., Kozar, K. A., & Larsen, K. R. T. (2003). The technology acceptance model: Past, present, and future. Communications of the Association for Information Systems, 12(1), 752–780. Ma, Q., & Liu, L. (2004). The technology acceptance model: A meta-analysis of empirical findings. Journal of Organizational and End User Computing, 16(1), 59–72. Marcoulides, G. A., & Heck, R. H. (1993). Organizational culture and performance: Proposing and testing a model. Organization Science, 4(2), 209–225. Martin, H. S., & Herrero, A. (2012). Influence of the user’s psychological factors on the online purchase intention in rural tourism: Integrating innovativeness to the UTAUT framework. Tourism Management, 33(2), 341–350. Mathieson, K. (1991). Predicting user intentions: Comparing the technology acceptance model with the theory of planned behavior. Information Systems Research, 2(3), 173–191. Moore, G. C., & Benbasat, I. (1991). Development of an instrument to measure the perceptions of adopting an information technology innovation. Information Systems Research, 2(3), 192–222. Pardamean, B., & Susanto, M. (2012). Assessing user acceptance toward blog technology using the UTAUT model. International Journal of Mathematics and Computers in Simulation, 1(6), 203–216. Park, J., Yang, S., & Lehto, X. (2007). Adoption of mobile technologies for Chinese consumers. Journal of Electronic Commerce Research, 8(3), 196–206. Pijpers, G. G. M., Bemelmans, T. M. A., Heemstra, F. J., & Montfort, K. A. G. M. (2001). Senior executives’ use of information technology. Information and Software Technology, 43(15), 959–971. Pynoo, B., Devolder, P., Voet, T., Vercruysse, J., Adang, L., & Duyck, P. (2007). Attitude as a measure for acceptance: Monitoring IS implementation in a hospital setting. Proceedings of the Sixth Annual Workshop on HCI Research in MIS, Montreal, Canada, December 8, 2007, 20–24. Pynoo, B., Devolder, P., Tondeur, J., Van Braak, J., Duyck, W., & Duyck, P. (2011). Predicting secondary school teachers’ acceptance and use of a digital learning environment: A cross-sectional study. Computers in Human Behavior, 27(1), 568–575. Rana, N. P., Dwivedi, Y. K., & Williams, M. D. (2015a). A meta-analysis of existing research on citizen adoption of e-government. Information Systems Frontiers, 17(3), 547–563. Rana, N. P., Dwivedi, Y. K., Williams, M. D., & Weerakkody, V. (2015b). Investigating success of an e-government initiative: Validation of an integrated IS success model. Information Systems Frontiers, 17(1), 127–142. Rana, N. P., Dwivedi, Y. K., Williams, M. D., & Weerakkody, V. (2016). Adoption of online public grievance redressal system in India: Toward developing a unified view. Computers in Human Behavior, 59, 265–282. Rana, N. P., Dwivedi, Y. K., Lal, B., Williams, M. D., & Clement, M. (2017). Citizens’ adoption of an electronic government system: Towards a Unified View. Information Systems Frontiers, 19(3), 549–568. doi:10.1007/s10796-015-9613-y. Ravishankar, M. N. (2008). Rewarding end-users for participating in organizational KM: A case study. Journal of Organizational and End User Computing, 20(1), 35–49. Rogers, E.M. (1995). Diffusion of innovations. Fourth Edition. The New York Free Press. Rosenthal, R. (1979). The ‘file drawer problem’ and tolerance for null results. Psychological Bulletin, 30(3), 638–641. Sabherwal, R., Jeyaraj, A., & Chowa, C. (2006). Information system success: Individual and organizational determinants. Management Science, 52(12), 1849–1864. Sahu, G. P., & Gupta, M. P. (2007). Users' acceptance of e-government: A study of Indian central excise. International Journal of Electronic Government Research, 3(3), 1–21. Sandeep, M. S., & Ravishankar, M. N. (2014). The continuity of underperforming ICT projects in the public sector. Information Management, 51(6), 700–711. Sharma, R., & Yetton, P. (2003). The contingent effects of management support and task interdependence on successful information systems implementation. MIS Quarterly, 27(4), 533–555. Sharma, R., Yetton, P., & Crawford, J. (2009). Estimating the effect of common method variance: The method-method pair technique with an illustration from TAM research. MIS Quarterly, 33(3), 473–490. Sheppard, B. H., Hartwick, I., & Warshaw, P. R. (1988). The theory of reasoned action: A meta-analysis of past research with recommendations for modifications and future research. Journal of Consumer Research, 15(3), 325–343. Sykes, T. A., Venkatesh, V., & Gosain, S. (2009). Model of acceptance with peer support: A social network perspective to understand employees’ system use. MIS Quarterly, 33(2), 371–393. Steiger, J. H. (1990). Structural model evaluation and modification: An interval estimation approach. Multivariate Behavioural Research, 25, 173–180. Sumak, B., Polancic, G., & Hericko, M. (2010). An empirical study of virtual learning environment adoption using UTAUT. Second International Conference on Mobile, Hybrid, and On-Line Learning, St Maarten, Netherlands Antilles, 17–22. doi: 10.1109/eLmL.2010.11. Taylor, S., & Todd, P. A. (1995a). Assessing IT usage: The role of prior experience. MIS Quarterly, 19(2), 561–570. Taylor, S., & Todd, P. A. (1995b). Understanding information technology usage: A test of competing models. Information Systems Research, 6(4), 144–176. Tett, R. P., & Meyer, J. P. (1993). Job satisfaction, organizational commitment, turnover intention, and turnover: Path analyses based on meta-analytic findings. Personnel Psychology, 46, 259–293. Thompson, R. L., Higgins, C. A., & Howell, J. M. (1991). Personal computing: Toward a conceptual model of utilization. MIS Quarterly, 15(1), 124–143. Tornatzky, L. G., & Klein, K. J. (1982). Innovation characteristics and innovation adoption-implementation: A meta-analysis of findings. IEEE Transactions on Engineering Management, 29(1), 28–45. Triandis, H. C. (1977). Interpersonal behavior. Monterey: Brooke Cole. Vallerand, R.J. (1997). Toward a hierarchical model of Intrinsic and extrinsic motivation. Advances in Experimental Social Psychology (29), M. Zanna (ed.), Academic Press, New York, 1997, 271–360. Venkatesh, V., & Bala, H. (2008). Technology acceptance model 3 and a research agenda on interventions. Decision Sciences, 39(2), 273–315. Venkatesh, V., & Brown, S. A. (2001). A longitudinal investigation of personal computers in homes: Adoption determinants and emerging challenges. MIS Quarterly, 25(1), 71–102. Venkatesh, V., & Davis, F. D. (2000). A theoretical extension of the technology acceptance model: Four longitudinal field studies. Management Science, 46(2), 186–204. Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User acceptance of information technology: Toward a unified view. MIS Quarterly, 27(3), 425–478. Venkatesh, V., & Speier, C. (1999). Computer technology training in the workplace: A longitudinal investigation of the effect of the mood. Organizational Behavior and Human Decision Processes, 79(1), 1–28. Venkatesh, V., Sykes, T.A., & Zhang, X. (2011b). ‘Just what the doctor ordered’: A revised UTAUT for EMR system adoption and use by doctors. In 44 th Hawaii International Conference on System Sciences (HICSS), Kauai, HI, USA, 4–7 January 2011, 1–10. doi:10.1109/HICSS.2011.1 Venkatesh, V., Thong, J. Y., Chan, F. K., Hu, P. J. H., & Brown, S. A. (2011a). Extending the two-stage information systems continuance model: Incorporating UTAUT predictors and the role of context. Information Systems Journal, 21(6), 527–555. Venkatesh, V., Thong, J., & Xu, X. (2012). Consumer acceptance and use of information technology: Extending the unified theory of acceptance and use of technology. MIS Quarterly, 36(1), 157–178. Viswesvaran, C., & Ones, D. S. (1998). Theory testing: Combining psychometric meta-analysis and structural equations modeling. Personnel Psychology, 48(4), 865–885. Warshaw, P. R. (1980). A new model for predicting behavioral intentions: An alternative to Fishbein. Journal of Marketing Research, 17(2), 153–172. Weerakkody, V., El-Haddadeh, R., Al-Sobhi, F., Shareef, M. A., & Dwivedi, Y. K. (2013). Examining the influence of intermediaries in facilitating e-government adoption: An empirical investigation. International Journal of Information Management, 33(5), 716–725. Weerakkody, V., Irani, Z., Kapoor, K., Sivarajah, U., & Dwivedi, Y. K. (2017). Open data and its usability: An empirical view from the Citizen’s perspective. Information Systems Frontiers, 19(2), 285–300. Williams, M. D., Dwivedi, Y. K., Lal, B., & Schwarz, A. (2009). Contemporary trends and issues in IT adoption and diffusion research. Journal of Information Technology, 24(1), 1–10. Williams, M. D., Rana, N. P., & Dwivedi, Y. K. (2015). The unified theory of acceptance and use of technology: A systematic review. Journal of Enterprise Information Management, 28(3), 443–488. Wu, J., & Du, H. (2012). Toward a better understanding of behavioral intention and system usage constructs. European Journal of Information Systems, 21(6), 680–698. Wu, J., & Lederer, A. (2009). A meta-analysis of the role of environment-based voluntariness in IT acceptance. MIS Quarterly, 33(2), 419–432. Yang, K. (2010). Determinants of US consumer mobile shopping services adoption: Implications for designing mobile shopping services. Journal of Consumer Marketing, 27(3), 262–270. Yang, H. D., & Yoo, Y. (2004). It's all about attitude: Revisiting the technology acceptance model. Decision Support Systems, 38(1), 19–31. Yeow, P. H., & Loo, W. H. (2009). Acceptability of ATM and transit applications embedded in multipurpose smart identity card: An exploratory study in Malaysia. International Journal of Electronic Government Research, 5(2), 37–56. Zhang, W., & Gutierrez, O. (2007). Information technology acceptance in the social services sector context: An exploration. Social Work, 52(3), 221–231. Zuiderwijk, A., Janssen, M., & Dwivedi, Y. K. (2015). Acceptance and use predictors of open data technologies: Drawing upon the unified theory of acceptance and use of technology. Government Information Quarterly, 32(4), 429–440.