Bandgap-dependent onset behavior of output characteristics in line-tunneling field-effect transistors

Springer Science and Business Media LLC - Tập 16 - Trang 696-703 - 2017
Chun-Hsing Shih1, Nguyen Dang Chien2
1Department of Electrical Engineering, National Chi Nan University, Nantou, Taiwan
2Faculty of Physics, Dalat University, Dalat, Vietnam

Tóm tắt

The onset behavior of output characteristics in tunnel field-effect transistors (TFETs) importantly determines the performance of digital TFET-based circuits. In this paper, we analytically and numerically examine the dependence of the onset behavior of output characteristics on the bandgap of semiconductors in line-tunneling TFETs. The qualitative and quantitative analyses show that the output onset behavior in line-tunneling TFETs strongly depends on the bandgap because the roles of two factors, including the incident electron number and tunneling probability, in determining the variation of tunneling current under increasing drain voltage change oppositely when varying the bandgap. Particularly, the superlinear onset in line-tunneling TFETs can be effectively suppressed to reduce the saturation drain voltage by using low-bandgap semiconductors. Together with the advantages in on-current and subthreshold swing as shown previously, the significant superiority in output characteristic makes the use of low-bandgap materials to be an efficient approach for simultaneously enhancing the device and circuit performances of advanced line-tunneling TFETs.

Tài liệu tham khảo

Choi, W.Y., Park, B.-G., Lee, J.D., Liu, T.-J.K.: Tunneling field-effect transistors (TFETs) with subthreshold swing (SS) less than 60 mV/dec. IEEE Electron Device Lett. 28, 743–745 (2007) Ionescu, A.M., Riel, H.: Tunnel field-effect transistors as energy-efficient electronic switches. Nature 479, 329–337 (2011) Appenzeller, J., Lin, Y.-M., Knoch, J., Avouris, Ph: Band-to-band tunneling in carbon nanotube field-effect transistors. Phys. Rev. Lett. 93, 196905 (2004) Kane, E.O.: Theory of tunneling. J. Appl. Phys. 31, 83–91 (1961) Zhang, Q., Zhao, W., Seabaugh, S.A.: Low-subthreshold swing tunnel transistors. IEEE Electron Device Lett. 27, 297–300 (2006) Boucart, K., Ionescu, A.M.: Double-gate tunnel FET with high-\(\kappa \) gate dielectric. IEEE Trans. Electron Devices 54, 1725–1733 (2007) Krishnamohan, T., Donghyun, K., Raghunathan, S., Saraswat, K.: Double-gate strained-Ge heterostructure tunneling FET (TFET) with record high drive currents and \(<\) 60 mV/dec subthreshold slope. In: IEDM Tech. Dig., pp. 1–3 (2008) Nayfeh, O.M., Hoyt, J.L., Antoniadis, D.A.: Strained-\(\text{ Si }_{1-{\rm x}}\text{ Ge }_{{\rm x}}\)/Si band-to-band tunneling transistors: Impact of tunnel junction germanium composition and doping concentration on switching behavior. IEEE Trans. Electron Devices 56, 2264–2269 (2009) Chien, N.D., Shih, C.-H., Vinh, L.T.: Drive current enhancement in tunnel field-effect transistors by graded heterojunction approach. J. Appl. Phys. 114, 094507 (2013). [Erratum. 114, 189901 (2013)] Wang, P.-Y., Tsui, B.-Y.: Band engineering to improve average subthreshold swing by suppressing low electric field band-to-band tunneling with epitaxial tunnel layer tunnel FET structure. IEEE Trans. Nanotechnol. 15, 74–79 (2016) Chen, S., Huang, Q., Huang, R.: Source doping profile design for Si and Ge tunnel FET. ECS Trans. 60, 91–96 (2014) Chien, N.D., Shih, C.-H.: Oxide thickness-dependent effects of source doping profile on the performance of single- and double-gate tunnel field-effect transistors. Superlattices Microstruct. 102, 284–299 (2017) Shih, C.-H., Chien, N.D.: Design and modeling of line-tunneling field-effect transistors using low-bandgap semiconductors. IEEE Trans. Electron Devices 61, 1907–1913 (2014) Pal, A., Sachid, A.B., Gossner, H., Rao, R.: Insights into the design and optimization of tunnel-FET devices and circuits. IEEE Trans. Electron Devices 58, 1045–1053 (2011) Saripalli, V., Datta, S., Narayanan, V., Kulkarni, J.P.: Variation-tolerant ultra low-power heterojunction tunnel FET SRAM design. In: IEEE/ACM Int. Sym. on Nanoscale Architectures, pp. 45–53 (2011) Esseni, D., Guglielmini, M., Kapidani, B., Rollo, T., Alioto, M.: Tunnel FETs for ultralow voltage digital VLSI circuits: part I - device-circuit interaction and evaluation at device level. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 22, 2488–2498 (2014) Dagtekin, N., Ionescu, A.M.: Impact of super-linear onset, off-region due to uni-directional conductance and dominant \(\text{ C }_{{\rm GD}}\) on performance of TFET-based circuits. IEEE J. Electron Devices Soc. 3, 233–239 (2015) Michielis, M.D., Lattanzio, L., Ionescu, A.M.: Understanding the superlinear onset of tunnel-FET output characteristic. IEEE Electron Devices Lett. 33, 1523–1525 (2012) Verhulst, A.S., Leonelli, D., Rooyackers, R., Groeseneken, G.: Drain voltage dependent analytical model of tunnel field-effect transistors. J. Appl. Phys. 110, 024510 (2011) Rajamohanan, B., Mohata, D., Ali, A., Datta, S.: Insight into the output characteristics of III-V tunneling field effect transistors. Appl. Phys. Lett. 102, 092105 (2013) Vandenberghe, W.G., Verhulst, A.S., Kao, K.-H., Meyer, K.D., Sorée, B., Magnus, W., Groeseneken, G.: A model determining optimal doping concentration and material’s band gap of tunnel field-effect transistors. Appl. Phys. Lett. 100, 193509 (2012) Wu, C., Huang, R., Huang, Q., Wang, J., Wang, Y.: Design guideline for complementary heterostructure tunnel FETs with steep slope and improved output behavior. IEEE Electron Devices Lett. 37, 20–23 (2016) Li, W., Sharmin, S., Ilatikhameneh, H., Rahman, R., Lu, Y., Wang, J., Yan, X., Seabaugh, A., Klimeck, G., Jena, D., Fay, P.: Polarization-engineered III-nitride heterojunction tunnel field-effect transistors. IEEE J. Explor. Solid-State Computat. Devices Circuits 1, 28–34 (2015) Toh, E.-H., Wang, G.H., Samudra, G., Yeo, Y.-C.: Device physics and design of germanium tunneling field-effect transistor with source and drain engineering for low power and high performance applications. J. Appl. Phys. 103, 104504 (2008) Synopsys MEDICI User’s Manual: Synopsys Inc. In: Mountain View, CA (2010) Levinshtein, M., Rumyantsev, S., Shur, M.: Handbook Series on Semiconductor Parameters, vol. 2. World Scientific, Singapore (1999) Jain, S.C., McGregor, J.M., Roulston, D.J.: Band-gap narrowing in novel III-V semiconductors. J. Appl. Phys. 68, 3747 (1990) Shih, C.-H., Chien, N.D.: Physical properties and analytical models of band-to-band tunneling in low-bandgap semiconductors. J. Appl. Phys. 115, 014507 (2014) Moll, J.L.: Physics of Semiconductors. McGraw-Hill, New York (1970) Leonelli, D., Anne Vandooren, A., Rooyackers, R., Verhulst, A.S., Gendt, S.D., Heyns, M.M., Groeseneken, G.: Performance enhancement in multi gate tunneling field effect transistors by scaling the fin-width. Jpn. J. Appl. Phys 49, 04DC10 (2010) Sun, Z., Zhang, L., Zhang, J., Yu, Z.: A one-piece compact model for tunneling FETs. In: Int. Conf. on Solid-State and Integrated Circuit Tech., pp. 1–3 (2014) Hurkx, G.A.M.: On the modelling of tunnelling currents in reverse-biased p-n junctions. Solid-State Electron. 32, 665–668 (1989)