Human appetitive Pavlovian-to-instrumental transfer: a goal-directed account

Psychological Research - Tập 85 - Trang 449-463 - 2019
Justin Mahlberg1, Tina Seabrooke2, Gabrielle Weidemann1,3, Lee Hogarth4, Chris J. Mitchell5, Ahmed A. Moustafa1,3
1School of Social Sciences and Psychology, Western Sydney University, Sydney, Australia
2School of Psychology, University of Southampton, Southampton, UK
3MARCS Institute for Brain, Behaviour, and Development, Western Sydney University, Sydney, Australia
4School of Psychology, University of Exeter, Exeter, UK
5School of Psychology, University of Plymouth, Plymouth, UK

Tóm tắt

Pavlovian-to-instrumental transfer (PIT) tasks assess the impact of environmental stimuli on instrumental actions. Since their initial translation from animal to human experiments, PIT tasks have provided insight into the mechanisms that underlie reward-based behaviour. This review first examines the main types of PIT tasks used in humans. We then seek to contribute to the current debate as to whether human PIT effects reflect a controlled, goal-directed process, or a more automatic, non-goal-directed mechanism. We argue that the data favour a goal-directed process. The extent to which the major theories of PIT can account for these data is then explored. We discuss a number of associative accounts of PIT as well as dual-process versions of these theories. Ultimately, however, we favour a propositional account, in which human PIT effects are suggested to be driven by both perceived outcome availability and outcome value. In the final section of the review, we present the potential objections to the propositional approach that we anticipate from advocates of associative link theories and our response to them. We also identify areas for future research.

Tài liệu tham khảo

Alarcón, D. E., & Bonardi, C. (2016). The effect of conditioned inhibition on the specific Pavlovian-instrumental transfer effect. Journal of Experimental Psychology: Animal Learning and Cognition, 42, 82–94. https://doi.org/10.1037/xan0000087. Alarcón, D. E., Bonardi, C., & Delamater, A. R. (2017). Associative mechanisms involved in specific Pavlovian-to-instrumental transfer (PIT) in human learning tasks. The Quarterly Journal of Experimental Psychology. https://doi.org/10.1080/17470218.2017.1342671. Allman, M. J., DeLeon, I. G., Cataldo, M. F., Holland, P. C., & Johnson, A. W. (2010). Learning processes affecting human decision making: An assessment of reinforcer-selective Pavlovian-to-instrumental transfer following reinforcer devaluation. Journal of Experimental Psychology: Animal Behavior Processes, 36, 402–408. https://doi.org/10.1037/a0017876. Anderson, B. A., Laurent, P. A., & Yantis, S. (2011). Value-driven attentional capture. Proceedings of the National Academy of Sciences, 108, 10367–10371. https://doi.org/10.1073/pnas.1104047108. Asratyan, E. A. (1974). Conditional reflex theory and motivational behavior. Acta Neurobiologiae Experimentalis, 34, 15–31. Berry, C. J., Shanks, D. R., & Henson, R. N. (2008). A unitary signal-detection model of implicit and explicit memory. Trends in Cognitive Sciences, 12(10), 367–373. Bezzina, L., Lee, J. C., Lovibond, P. F., & Colagiuri, B. (2016). Extinction and renewal of cue-elicited reward-seeking. Behaviour Research and Therapy, 87, 162–169. https://doi.org/10.1016/j.brat.2016.09.009. Campese, V. D., McCue, M., Lázaro-Muñoz, G., LeDoux, J. E., & Cain, C. K. (2013). Development of an aversive Pavlovian-to-instrumental transfer task in rat. Frontiers in Behavioral Neuroscience, 7, 176. https://doi.org/10.3389/fnbeh.2013.00176. Cartoni, E., Balleine, B., & Baldassarre, G. (2016). Appetitive Pavlovian-instrumental transfer: A review. Neuroscience and Biobehavioral Reviews, 71, 829–848. https://doi.org/10.1016/j.neubiorev.2016.09.020. Cartoni, E., Moretta, T., Puglisi-Allegra, S., Cabib, S., & Baldassarre, G. (2015). The relationship between specific Pavlovian instrumental transfer and instrumental reward probability. Frontiers in Psychology, 6, 1–7. https://doi.org/10.3389/fpsyg.2015.01697. Chater, N. (2009). Rational models of conditioning. Behavioral and Brain Sciences, 32, 204–205. https://doi.org/10.1017/S0140525X09000922. Colagiuri, B., & Lovibond, P. F. (2015). How food cues can enhance and inhibit motivation to obtain and consume food. Appetite, 84, 79–87. https://doi.org/10.1016/j.appet.2014.09.023. Colwill, R. M., & Rescorla, R. A. (1988). Associations between the discriminative stimulus and the reinforcer in instrumental learning. Journal of Experimental Psychology: Animal Behavior Processes, 14, 155–164. https://doi.org/10.1037/0097-7403.14.2.155. Colwill, R. M., & Rescorla, R. A. (1990). Evidence for the hierarchical structure of instrumental learning. Animal Learning & Behavior, 18, 71–82. https://doi.org/10.3758/BF03205241. Corbit, L. H., & Balleine, B. W. (2005). Double dissociation of basolateral and central amygdala lesions on the general and outcome-specific forms of Pavlovian-instrumental transfer. Journal of Neuroscience, 25, 962–970. https://doi.org/10.1523/JNEUROSCI.4507-04.2005. Corbit, L. H., & Balleine, B. W. (2011). The general and outcome-specific forms of Pavlovian-instrumental transfer are differentially mediated by the nucleus accumbens core and shell. Journal of Neuroscience, 31, 11786–11794. https://doi.org/10.1523/JNEUROSCI.2711-11.2011. Corbit, L. H., & Janak, P. H. (2007). Ethanol-associated cues produce general Pavlovian-instrumental transfer. Alcoholism: Clinical and Experimental Research, 31(5), 766–774. https://doi.org/10.1111/j.1530-0277.2007.00359.x. Corbit, L. H., Janak, P. H., & Balleine, B. W. (2007). General and outcome-specific forms of Pavlovian-instrumental transfer: the effect of shifts in motivational state and inactivation of the ventral tegmental area. European Journal of Neuroscience, 26, 3141–3149. https://doi.org/10.1111/j.1460-9568.2007.05934.x. Corbit, L. H., Muir, J. L., & Balleine, B. W. (2001). The role of the nucleus accumbens in instrumental conditioning: Evidence of a functional dissociation between accumbens core and shell. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, 21, 3251–60. http://www.jneurosci.org/content/21/9/3251. De Houwer, J. (2009). The propositional approach to associative learning as an alternative for association formation models. Learning & Behavior, 37, 1–20. https://doi.org/10.3758/LB.37.1.1. de Wit, S., & Dickinson, A. (2009). Associative theories of goal-directed behaviour: A case for animal–human translational models. Psychological Research, 73, 463–476. https://doi.org/10.1007/s00426-009-0230-6. de Wit, S., & Dickinson, A. (2015). Ideomotor mechanisms of goal-directed behavior. In T. S. Braver (Ed.), Motivation and cognitive control (pp. 135–154). Routledge. de Wit, S., Ridderinkhof, K. R., Fletcher, P. C., & Dickinson, A. (2013). Resolution of outcome-induced response conflict by humans after extended training. Psychological Research, 77, 780–793. https://doi.org/10.1007/s00426-012-0467-3. Dickinson, A. (1985). Actions and habits: the development of behavioural autonomy. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 308, 67–78. https://doi.org/10.1098/rstb.1985.0010. Dickinson, A. (1994). Instrumental conditioning. In N. J. Mackintosh (Ed.), Animal learning and cognition (pp. 45–79). San Diego: Academic Press. Dickinson, A. (2012). Associative learning and animal cognition. Philosophical Transactions of the Royal Society B: Biological Sciences, 367, 2733–2742. https://doi.org/10.1098/rstb.2012.0220. Dunn, J. C., & Kirsner, K. (1988). Discovering functionally independent mental processes: The principle of reversed association. Psychological Review, 95(1), 91–101. https://doi.org/10.1037/0033-295X.95.1.91. Dunn, J. C., & Kirsner, K. (2003). What can we infer from double dissociations? Cortex, 39(1), 1–7. https://doi.org/10.1016/s0010-9452(08)70070-4. Eder, A. B., & Dignath, D. (2016a). Asymmetrical effects of posttraining outcome revaluation on outcome-selective Pavlovian-to-instrumental transfer of control in human adults. Learning and Motivation, 54, 12–21. https://doi.org/10.1017/CBO9781107415324.004. Eder, A. B., & Dignath, D. (2016b). Cue-elicited food seeking is eliminated with aversive outcomes following outcome devaluation. Quarterly Journal of Experimental Psychology, 69, 574–588. https://doi.org/10.1080/17470218.2015.1062527. Elsner, B., & Hommel, B. (2001). Effect anticipation and action control. Journal of Experimental Psychology: Human Perception and Performance, 27, 229–240. https://doi.org/10.1037//0096-1523.27.1.229. Estes, W. K. (1943). Discriminative conditioning. I. A discriminative property of conditioned anticipation. Journal of Experimental Psychology, 32, 150–155. https://doi.org/10.1037/h0058316. Everitt, B. J., & Robbins, T. W. (2016). Drug addiction: Updating actions to habits to compulsions 10 years on. Annual Review of Psychology, 63, 23–50. https://doi.org/10.1146/annurev-psych-122414-033457. Garbusow, M., Schad, D. J., Sebold, M., Friedel, E., Bernhardt, N., Koch, S. P., & Heinz, A. (2016). Pavlovian-to-instrumental transfer effects in the nucleus accumbens relate to relapse in alcohol dependence. Addiction Biology, 21, 719–731. https://doi.org/10.1111/adb.12243. Geurts, D. E. M., Huys, Q. J. M., den Ouden, H. E. M., & Cools, R. (2013). Serotonin and aversive Pavlovian control of instrumental behavior in humans. Journal of Neuroscience, 33, 18932–18939. https://doi.org/10.1523/JNEUROSCI.2749-13.2013. Hardy, L., Mitchell, C. J., Seabrooke, T., & Hogarth, L. (2017). Drug cue reactivity involves hierarchical instrumental learning: Evidence from a biconditional Pavlovian to instrumental transfer task. Psychopharmacology (Berl), 234, 1977–1984. https://doi.org/10.1007/s0021. Heyes, C., & Dickinson, A. (1990). The intentionality of animal action. Mind & Language, 5, 87–103. https://doi.org/10.1111/j.1468-0017.1990.tb00154.x. Hogarth, L. (2012). Goal-directed and transfer-cue-elicited drug-seeking are dissociated by pharmacotherapy: Evidence for independent additive controllers. Journal of Experimental Psychology: Animal Behavior Processes, 38, 266–278. https://doi.org/10.1037/a0028914. Hogarth, L., Balleine, B. W., Corbit, L. H., & Killcross, S. (2013). Associative learning mechanisms underpinning the transition from recreational drug use to addiction. Annals of the New York Academy of Sciences, 1282, 12–24. https://doi.org/10.1111/j.1749-6632.2012.06768.x. Hogarth, L., & Chase, H. W. (2011). Parallel goal-directed and habitual control of human drug-seeking: Implications for dependence vulnerability. Journal of Experimental Psychology: Animal Behavior Processes, 37, 261–276. https://doi.org/10.1037/a0022913. Hogarth, L., Dickinson, A., & Duka, T. (2010). The associative basis of cue-elicited drug taking in humans. Psychopharmacology (Berl), 208, 337–351. https://doi.org/10.1007/s00213-009-1735-9. Hogarth, L., Dickinson, A., Wright, A., Kouvaraki, M., & Duka, T. (2007). The role of drug expectancy in the control of human drug seeking. Journal of Experimental Psychology: Animal Behavior Processes, 33, 484–496. https://doi.org/10.1037/0097-7403.33.4.484. Hogarth, L., Lam-Cassettari, C., Pacitti, H., Currah, T., Mahlberg, J., Hartley, L., et al. (2018). Intact goal-directed control in treatment-seekingdrug users indexed by outcome-devaluation and Pavlovian to instrumental transfer: critique of habit theory. European Journal of Neuroscience, 50(3), 2513–2525. https://doi.org/10.1111/ejn.13961. Hogarth, L., Retzler, C., Munafò, M. R., Tran, D. M. D., Troisi, J. R., Rose, A. K., & Field, M. (2014). Extinction of cue-evoked drug-seeking relies on degrading hierarchical instrumental expectancies. Behaviour Research and Therapy, 59, 61–70. https://doi.org/10.1016/j.brat.2014.06.001. Hogarth, L., & Troisi, J. R. I. (2015). A hierarchical instrumental decision theory of nicotine dependence. Nature, 23, 165–191. https://doi.org/10.1007/978-3-319-13665-3. Holland, P. C. (2004). Relations between Pavlovian-instrumental transfer and reinforcer devaluation. Journal of Experimental Psychology: Animal Behavior Processes, 30, 104–117. https://doi.org/10.1037/0097-7403.30.2.104. Holmes, N. M., Marchand, A. R., & Coutureau, E. (2010). Pavlovian to instrumental transfer: A neurobehavioral perspective. Neuroscience and Biobehavioral Reviews, 34, 1277–1295. https://doi.org/10.1016/j.neubiorev.2010.03.007. Hommel, B. (2013). Ideomotor action control: on the perceptual grounding of voluntary actions and agents. In W. Prinz, M. Beisert, & A. Herwig (Eds.), Action Science: Foundations of an Emerging Discipline (pp. 113–136). Cambridge, MA: The MIT Press. Hommel, B., & Wiers, R. W. (2017). Towards a unitary approach to human action control. Trends in Cognitive Sciences, 21, 940–949. https://doi.org/10.1016/j.tics.2017.09.009. Huys, Q. J. M., Cools, R., Gölzer, M., Friedel, E., Heinz, A., Dolan, R. J., & Dayan, P. (2011). Disentangling the roles of approach, activation and valence in instrumental and Pavlovian responding. PLoS Computational Biology, 7, e1002028. https://doi.org/10.1371/journal.pcbi.1002028. Jeffs, S., & Duka, T. (2017). Predictive but not emotional value of Pavlovian stimuli leads to pavlovian-to-instrumental transfer. Behavioural Brain Research, 321, 214–222. https://doi.org/10.1016/j.bbr.2016.12.022. Kruse, J. M., Overmier, J. B., Konz, W. A., & Rokke, E. (1983). Pavlovian conditioned stimulus effects upon instrumental choice behavior are reinforcer specific. Learning and Motivation, 14, 165–181. https://doi.org/10.1016/0023-9690(83)90004-8. Lewis, A. H., Niznikiewicz, M. A., Delamater, A. R., & Delgado, M. R. (2013). Avoidance-based human Pavlovian-to-instrumental transfer. European Journal of Neuroscience, 38, 3740–3748. https://doi.org/10.1111/ejn.12377. Lovibond, P. F. (1981). Appetitive Pavlovian-instrumental interactions: effects of inter-stimulus interval and baseline reinforcement conditions. The Quarterly Journal of Experimental Psychology B, Comparative and Physiological Psychology, 33, 257–269. https://doi.org/10.1080/14640748108400811. Lovibond, P. F., & Colagiuri, B. (2013). Facilitation of voluntary goal-directed action by reward cues. Psychological Science, 24, 2030–2037. https://doi.org/10.1177/0956797613484043. Lovibond, P. F., Satkunarajah, M., & Colagiuri, B. (2015). Extinction can reduce the impact of reward cues on reward-seeking behavior. Behavior Therapy, 46, 432–438. https://doi.org/10.1016/j.beth.2015.03.005. Lovibond, P. F., & Shanks, D. R. (2002). The role of awareness in Pavlovian conditioning: Empirical evidence and theoretical implications. Journal of Experimental Psychology: Animal Behavior Processes, 28, 3–26. https://doi.org/10.1037//0097-7403.28.1.3. Mahlberg, J., Weidemann, G., Hogarth, L., & Moustafa, A. A. (2019). Cue-elicited craving and human Pavlovian-to-instrumental transfer. Addiction Research & Theory. https://doi.org/10.1080/16066359.2018.1544625. McLaren, I. P. L., Forrest, C. L. D., McLaren, R. P., Jones, F. W., Aitken, M. R. F., & Mackintosh, N. J. (2014). Associations and propositions: The case for a dual-process account of learning in humans. Neurobiology of Learning and Memory, 108, 185–195. https://doi.org/10.1016/j.nlm.2013.09.014. McLaren, I. P. L., McAndrew, A., Angerer, K., McLaren, R., Forrest, C., Bowditch, W. A., & Verbruggen, F. (2018). Mackintosh lecture: Association and cognition: Two processes, one system. Quarterly Journal of Experimental Psychology. https://doi.org/10.1177/1747021818766287. Mitchell, C. J., De Houwer, J., & Lovibond, P. F. (2009). The propositional nature of human associative learning. Behavioral and Brain Sciences, 32, 183–198. https://doi.org/10.1017/S0140525X09000855. Ostlund, S. B., & Balleine, B. W. (2007). Orbitofrontal cortex mediates outcome encoding in Pavlovian but not instrumental conditioning. Journal of Neuroscience, 27(18), 4819–4825. https://doi.org/10.1523/JNEUROSCI.5443-06.2007. Pavlov, I. P. (1932). The reply of a physiologist to psychologists. The Psychological Review, 39, 91–297. https://doi.org/10.1037/h0069929. Prévost, C., Liljeholm, M., Tyszka, J. M., & O’Doherty, J. P. (2012). Neural correlates of specific and general Pavlovian-to-instrumental transfer within human amygdalar subregions: A high-resolution fMRI study. The Journal of Neuroscience, 32(24), 8383–8390. https://doi.org/10.1523/JNEUROSCI.6237-11.2012. Pritchard, T. L., Weidemann, G., & Hogarth, L. (2017). Negative emotional appraisal selectively disrupts retrieval of expected outcome values required for goal-directed instrumental choice. Cognition and Emotion, 32, 843–851. https://doi.org/10.1080/02699931.2017.1359017. Quail, S. L., Morris, R. W., & Balleine, B. W. (2017). Stress associated changes in Pavlovian-instrumental transfer in humans. Quarterly Journal of Experimental Psychology, 70, 675–685. https://doi.org/10.1080/17470218.2016.1149198. Rescorla, R. A. (1990). Evidence for an association between the discriminative stimulus and the response–outcome association in instrumental learning. Journal of Experimental Psychology: Animal Behavior Processes, 16, 326–334. https://doi.org/10.1037/0097-7403.16.4.326. Rescorla, R. A. (1991). Associative relations in instrumental learning: The eighteenth Bartlett memorial lecture. The Quarterly Journal of Experimental Psychology Section B, 43, 1–23. https://doi.org/10.1080/14640749108401256. Rescorla, R. A. (1994a). Control of instrumental performance by Pavlovian and instrumental stimuli. Journal of Experimental Psychology: Animal Behavior Processes, 20, 44–50. https://doi.org/10.1037/0097-7403.20.1.44. Rescorla, R. A. (1994b). Transfer of instrumental control mediated by a devalued outcome. Animal Learning & Behavior, 22, 27–33. https://doi.org/10.3758/BF03199953. Rescorla, R. A., & Solomon, R. L. (1967). Two-process learning theory: Relationships between Pavlovian conditioning and instrumental learning. Psychological Review, 74, 713. https://doi.org/10.1037/h0021465. Robinson, T. E., & Berridge, K. C. (2008). The incentive sensitization theory of addiction: Some current issues. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 363, 3137–3146. https://doi.org/10.1098/rstb.2008.0093. Rose, A. K., Brown, K., Mackillop, J., Field, M., & Hogarth, L. (2018). Alcohol devaluation has dissociable effects on distinct components of alcohol behaviour. Psychopharmacology (Berl), 235, 1233–1244. https://doi.org/10.1007/s00213-018-4839-2. Seabrooke, T., Hogarth, L., Edmunds, C. E. R., & Mitchell, C. J. (2019). Goal-directed control in Pavlovian-instrumental transfer. Journal of Experimental Psychology: Animal Learning and Cognition, 45, 95–101. https://doi.org/10.1037/xan0000191. Seabrooke, T., Hogarth, L., & Mitchell, C. J. (2016). The propositional basis of cue-controlled reward seeking. Quarterly Journal of Experimental Psychology, 69, 2452–2470. https://doi.org/10.1080/17470218.2015.1115885. Seabrooke, T., Le Pelley, M. E., Hogarth, L., & Mitchell, C. J. (2017). Evidence of a goal-directed process in human Pavlovian-instrumental transfer. Journal of Experimental Psychology: Animal Learning and Cognition, 43, 377–387. https://doi.org/10.1037/xan0000147. Seabrooke, T., Le Pelley, M. E., Porter, A., & Mitchell, C. J. (2018a). Extinguishing cue-controlled reward choice: Effects of Pavlovian extinction on outcome-selective Pavlovian-instrumental transfer. Journal of Experimental Psychology: Animal Learning and Cognition, 44, 280–292. https://doi.org/10.1037/xan0000176. Seabrooke, T., Wills, A. J., Hogarth, L., & Mitchell, C. J. (2018b). Automaticity and cognitive control: Effects of cognitive load on cue-controlled reward choice. Quarterly Journal of Experimental Psychology, 72(6), 1507–1521. https://doi.org/10.1177/1747021818797052. Shin, Y. K., Proctor, R. W., & Capaldi, E. J. (2010). A review of contemporary ideomotor theory. Psychological Bulletin, 136, 943–974. https://doi.org/10.1037/a0020541. Talmi, D., Seymour, B., Dayan, P., & Dolan, R. J. (2008). Human Pavlovian-instrumental transfer. Journal of Neuroscience, 28, 360–368. https://doi.org/10.1523/JNEUROSCI.4028-07.2008. Tiffany, S. T., & Conklin, C. A. (2000). A cognitive processing model of alcohol craving and compulsive alcohol use. Addiction, 95, S145–S153. https://doi.org/10.1046/j.1360-0443.95.8s2.3.x. Trapold, M. A., & Overmier, J. B. (1972). The second learning process in instrumental conditioning. In A. A. Black & W. F. Prokasy (Eds.), ClassicalConditioning II: Current Theory and Research (1st ed., pp. 427–452). New York: Appelton-Century-Crofts. Trick, L., Hogarth, L., & Duka, T. (2011). Prediction and uncertainty in human Pavlovian to instrumental transfer. Journal of Experimental Psychology. Learning, Memory, and Cognition, 37, 757–765. https://doi.org/10.1037/a0022310. van Steenbergen, H., Watson, P., Wiers, R. W., Hommel, B., & de Wit, S. (2017). Dissociable corticostriatal circuits underlie goal-directed versus cue-elicited habitual food seeking after satiation: Evidence from a multimodal MRI study. European Journal of Neuroscience, 46, 1815–1827. https://doi.org/10.1111/ejn.13586. Verhoeven, A. A. C., Watson, P., & de Wit, S. (2018). Failing to pay heed to health warnings in a food-associated environment. Appetite, 120, 616–626. https://doi.org/10.1016/j.appet.2017.10.020. Walker, K. C. (1942). The effect of a discriminative stimulus transferred to a previously unassociated response. Journal of Experimental Psychology, 31, 312–321. https://doi.org/10.1037/h0062929. Watson, P., de Wit, S., Hommel, B., & Wiers, R. W. (2012). Motivational mechanisms and outcome expectancies underlying the approach bias toward addictive substances. Frontiers in Psychology, 3, 1–12. https://doi.org/10.3389/fpsyg.2012.00440. Watson, P., Wiers, R. W., Hommel, B., & de Wit, S. (2014). Working for food you don’t desire. Cues interfere with goal-directed food-seeking. Appetite, 79, 139–148. https://doi.org/10.1016/j.appet.2014.04.005. Watson, P., Wiers, R. W., Hommel, B., & de Wit, S. (2018). Motivational sensitivity of outcome–response priming: Experimental research and theoretical models. Psychonomic Bulletin & Review. https://doi.org/10.3758/s13423-018-1449-2. Watson, P., Wiers, R. W., Hommel, B., Ridderinkhof, K. R., & de Wit, S. (2016). An associative account of how the obesogenic environment biases adolescents’ food choices. Appetite, 96, 560–571. https://doi.org/10.1016/j.appet.2015.10.008.