A quantitative finite-dimensional krivine theorem

Springer Science and Business Media LLC - Tập 50 - Trang 1-12 - 1985
D. Amir1, V. D. Milman1
1Department of Mathematics, Tel-Aviv University, Ramat-Aviv, Israel

Tóm tắt

Measure concentration arguments are applied to get a power-type estimate for the dimension of almostl p subspaces of isomorphs ofl p n and for the length of almost-symmetric sequences under a nonlinear-type condition.

Tài liệu tham khảo

N. Alon and D. Milman,Embedding of l k∞ in finite dimensional Banach spaces, Isr. J. Math.45 (1983), 265–280. D. Amir and V. D. Milman,Unconditional and symmetric sets in n-dimensional normed spaces, Isr. J. Math.37 (1980), 3–20. T. Figiel, J. Lindenstrauss and V. D. Milman,The dimensions of almost spherical sections of convex bodies, Acta Math.139 (1977), 53–94. M. Gromov and V. D. Milman,A topological application of the isoperimetric inequality, Am. J. Math.105 (1983), 843–854. M. Gromov and V. D. Milman,Brunn theorem and a concentration of volume phenomena for symmetric convex bodies, Geometrical Aspects of Functional Analysis, Seminar Notes, Tel Aviv, 1983–4. V. I. Gurari, M. I. Kadec and V. I. Macaev,On Banach-Mazur distance between certain Minkowski spaces, Bull. Acad. Polon. Sci.13 (1965), 719–722. J. L. Krivine,Sous espaces de dimension finis des espaces de Banach reticulés, Ann. of Math.104 (1976), 1–29. D. R. Lewis,Finite dimensional subspaces of L p, Studia Math.63 (1978), 207–212. B. Maurey,Construction de suites symétriques, Comptes Rendus Acad. Sci. Paris.288 (1979), A679-A681. V. D. Milman,A new proof of the theorem of A. Dvoretzky on sections of convex bodies, Funct. Anal. Appl.5 (1971), 28–37 (transl. from Russian). V. D. Milman and G. Schechtman,Asymptotic Theory of Finite Dimensional Banach Spaces, Springer Lecture Notes, to appear. G. Pisier,On the dimension of the l np -subspaces of Banach spaces, for 1≦p<2, Trans. Am. Math. Soc.276 (1983), 201–211. G. Schechtman,Levy type inequality for a class of finite metric spaces, inMartingale Theory in Harmonic Analysis and Applications, Cleveland 1981, Springer Lecture Notes in Math. No. 939, 1982, pp. 211–215.