Does “Δ 2 d 2-n = 0 on a Riemannian manifold” imply flatness?

Springer Science and Business Media LLC - Tập 17 - Trang 109-117 - 1986
R. Caddeo1, L. Vanhecke2
1Istituto Matematico, Università di Cagliari, Cagliari, Italy
2Department of Mathematics, Katholieke Universiteit Leuven, Leuven, Belgium

Tài liệu tham khảo

M. Berger, P. Gauduchon andE. Mazet,Le spectre d'une variété riemannienne, Springer, Berlin, 1971.MR 43: 8025 A. L. Besse,Manifolds all of whose geodesics are closed, Springer, Berlin, 1978.MR 80c: 53044 R. Caddeo, Riemannian manifolds on which the distance function is biharmonic,Rend. Sem. Mat. Univ. e Politec. Torino 40 (1982), 93–101.MR 84i: 53040 R. Caddeo andP. Matzeu, Riemannian manifolds satisfyingΔ 2 r k = 0. (To appear) P. Carpenter, A. Gray andT. J. Willmore, The curvature of Einstein symmetric spaces,Quart. J. Math. Oxford 33 (1982), 45–64.MR 84k: 53048 B. Y. Chen andL. Vanhecke, Differential geometry of geodesic spheres,J. Reine Angew. Math. 325 (1981), 28–67.MR 82m: 53038 A. Gray andM. Pinsky, The mean exit time from a small geodesic ball in a Riemannian manifold,Bull. Sci. Math. (To appear) A. Gray andL. Vanhecke, Riemannian geometry as determined by the volumes of small geodesic balls,Acta Math. 142 (1979), 157–198.MR 81i: 53038 S. Helgason,Differential geometry, Lie groups and symmetric spaces, Academic Press, New York, 1978.MR 80k: 53081 O. Loos,Symmetric spaces I–II, W. A. Benjamin, New York, 1969.MR 39: 365 H. Ruse, A. G. Walker andT. J. Willmore,Harmonic spaces, Cremonese, Roma, 1961.MR 25: 5456