Fabrication of BiOBr nanosheets@TiO2 nanobelts p–n junction photocatalysts for enhanced visible-light activity

Applied Surface Science - Tập 365 - Trang 209-217 - 2016
Yang Zhao1, Xiang Huang1,2, Xin Tan2, Tao Yu1,3, Xiangli Li4, Libin Yang5, Shucong Wang4
1School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
2School of Science, Tibet University, Lhasa, 850000, PR China
3Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, PR China
4School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China
5College of Chemical Engineering and Materials Science, Tianjin University of Science & Technology, Tianjin Key Laboratory of Marine Resources and Chemistry, Tianjin 300457, China

Tài liệu tham khảo

Schneider, 2014, Understanding TiO2 photocatalysis: mechanisms and materials, Chem. Rev., 114, 9919, 10.1021/cr5001892 Qu, 2013, Progress, challenge and perspective of heterogeneous photocatalysts, Chem. Soc. Rev., 42, 2568, 10.1039/C2CS35355E Tian, 2014, Recent progress in design, synthesis, and applications of one-dimensional TiO2 nanostructured surface heterostructures: a review, Chem. Soc. Rev., 43, 6920, 10.1039/C4CS00180J Tada, 2006, All-solid-state Z-scheme in CdS–Au–TiO2 three-component nanojunction system, Nat. Mater., 5, 782, 10.1038/nmat1734 Zhao, 2015, Efficient visible light photocatalytic activity of p–n junction CuO/TiO2 loaded on natural zeolite, RSC Adv., 5, 64495, 10.1039/C5RA07597A Wang, 2015, TiO2/NiO hybrid shells: p–n junction photocatalysts with enhanced activity under visible light, J. Mater. Chem. A, 3, 20727, 10.1039/C5TA05839B Zhou, 2013, Synthesis of few-layer MoS2 nanosheet-coated TiO2 nanobelt heterostructures for enhanced photocatalytic activities, Small, 9, 140, 10.1002/smll.201201161 Mao, 2014, High electrochemical performance based on the TiO2 nanobelt@few-layered MoS2 structure for lithium-ion batteries, Nanoscale, 6, 12350, 10.1039/C4NR03991B Tian, 2013, Enhanced photocatalytic performances of CeO2/TiO2 nanobelt heterostructures, Small, 9, 3864, 10.1002/smll.201202346 Hu, 2011, BiVO4/TiO2 nanocrystalline heterostructure: a wide spectrum responsive photocatalyst towards the highly efficient decomposition of gaseous benzene, Appl. Catal. B: Environ., 104, 30, 10.1016/j.apcatb.2011.02.031 Cheng, 2014, Engineering BiOX (X=Cl, Br, I) nanostructures for highly efficient photocatalytic applications, Nanoscale, 6, 2009, 10.1039/c3nr05529a Dai, 2011, Synthesis and enhanced visible-light photoelectrocatalytic activity of p–n junction BiOI/TiO2 nanotube arrays, J. Phys. Chem. C, 115, 7339, 10.1021/jp200788n Liu, 2014, BiOI/TiO2 nanotube arrays, a unique flake-tube structured p–n junction with remarkable visible-light photoelectrocatalytic performance and stability, Dalton Trans., 43, 1706, 10.1039/C3DT52394B Hou, 2013, Bi4Ti3O12 nanofibers-BiOI nanosheets p–n junction: facile synthesis and enhanced visible-light photocatalytic activity, Nanoscale, 5, 9764, 10.1039/c3nr02458j Fan, 2014, Fabrication of TiO2–BiOCl double-layer nanostructure arrays for photoelectrochemical water splitting, CrystEngComm, 16, 820, 10.1039/C3CE42001A Duo, 2015, Low temperature one-step synthesis of rutile TiO2/BiOCl composites with enhanced photocatalytic activity, Mater. Charact., 99, 8, 10.1016/j.matchar.2014.11.002 Yang, 2014, Preparation and photocatalytic activity of BiOX-TiO2 composite films (X=Cl, Br, I), Ceram. Int., 40, 8607, 10.1016/j.ceramint.2014.01.077 Wei, 2013, Hybrid BiOBr-TiO2 nanocomposites with high visible light photocatalytic activity for water treatment, J. Hazard. Mater., 263, 650, 10.1016/j.jhazmat.2013.10.027 Wang, 2015, Construction of amorphous TiO2/BiOBr heterojunctions via facets coupling for enhanced photocatalytic activity, J. Hazard. Mater., 292, 126, 10.1016/j.jhazmat.2015.03.030 Zhang, 2009, Low-temperature synthesis and high visible-light-induced photocatalytic activity of BiOI/TiO2 heterostructures, J. Phys. Chem. C, 113, 7371, 10.1021/jp900812d Li, 2011, BiOI-sensitized TiO2 in phenol degradation: a novel efficient semiconductor sensitizer, Chem. Phys. Lett., 508, 102, 10.1016/j.cplett.2011.04.019 Liu, 2012, Microemulsion synthesis, characterization of bismuth oxyiodine/titanium dioxide hybrid nanoparticles with outstanding photocatalytic performance under visible light irradiation, Appl. Surf. Sci., 258, 3771, 10.1016/j.apsusc.2011.12.025 Wu, 2014, Photocatalytic self-cleaning properties of cotton fabrics functionalized with p-BiOI/n-TiO2 heterojunction, Surf. Coat. Technol., 258, 672, 10.1016/j.surfcoat.2014.08.019 Liao, 2014, BiOI nanosheets decorated TiO2 nanofiber: tailoring water purification performance of photocatalyst in structural and photo-responsivity aspects, Appl. Surf. Sci., 314, 481, 10.1016/j.apsusc.2014.07.032 Wang, 2015, BiOI/TiO2-nanorod array heterojunction solar cell: growth, charge transport kinetics and photoelectrochemical properties, Appl. Surf. Sci., 324, 532, 10.1016/j.apsusc.2014.10.110 Wang, 2014, One-dimensional titanium dioxide nanomaterials: nanowires, nanorods, and nanobelts, Chem. Rev., 114, 9346, 10.1021/cr400633s Zhao, 2015, Structure, synthesis, and applications of TiO2 nanobelts, Adv Mater., 27, 2557, 10.1002/adma.201405589 Cho, 2011, Branched TiO2 nanorods for photoelectrochemical hydrogen production, Nano Lett., 11, 4978, 10.1021/nl2029392 Chen, 2014, Thermodynamically driven one-dimensional evolution of anatase TiO2 nanorods: one-step hydrothermal synthesis for emerging intrinsic superiority of dimensionality, J. Am. Chem. Soc., 136, 15310, 10.1021/ja5080568 Hwang, 2012, Photoelectrochemical properties of TiO2 nanowire arrays: a study of the dependence on length and atomic layer deposition coating, ACS Nano, 6, 5060, 10.1021/nn300679d Yi, 2015, AgI/TiO2 nanobelts monolithic catalyst with enhanced visible light photocatalytic activity, J. Hazard. Mater., 284, 207, 10.1016/j.jhazmat.2014.11.020 Sarkar, 2014, Branch density-controlled synthesis of hierarchical TiO2 nanobelt and tunable three-step electron transfer for enhanced photocatalytic property, ACS Appl. Mater. Interfaces, 6, 10044, 10.1021/am502379q Sang, 2014, Enhanced photocatalytic property of reduced graphene oxide/TiO2 nanobelt surface heterostructures constructed by an in situ photochemical reduction method, Small, 10, 3775, 10.1002/smll.201303489 Lee, 2014, One-dimensional titanium dioxide nanomaterials: nanotubes, Chem. Rev., 114, 9385, 10.1021/cr500061m Roy, 2011, TiO2 nanotubes: synthesis and applications, Angew. Chem. Int. Ed., 50, 2904, 10.1002/anie.201001374 Li, 2015, A facile approach for the tunable fabrication of BiOBr photocatalysts with high activity and stability, Appl. Surf. Sci., 355, 1075, 10.1016/j.apsusc.2015.07.216 Dai, 2015, Enhanced visible-light photocatalytic activity for selective oxidation of amines into imines over TiO2(B)/anatase mixed-phase nanowires, Appl. Surf. Sci., 349, 343, 10.1016/j.apsusc.2015.04.232 Zhou, 2011, Phase transformation of TiO2 nanobelts and TiO2(B)/anatase interface heterostructure nanobelts with enhanced photocatalytic activity, CrystEngComm, 13, 6643, 10.1039/c1ce05638g Huo, 2012, Solvothermal synthesis of flower-like BiOBr microspheres with highly visible-light photocatalytic performances, Appl. Catal. B: Environ., 111–112, 334, 10.1016/j.apcatb.2011.10.016 Shi, 2013, PVP assisted hydrothermal synthesis of BiOBr hierarchical nanostructures and high photocatalytic capacity, Chem. Eng. J., 222, 120, 10.1016/j.cej.2013.02.034 Zhang, 2014, Self-assembly of a Ag nanoparticle-modified and graphene-wrapped TiO2 nanobelt ternary heterostructure: surface charge tuning toward efficient photocatalysis, Nanoscale, 6, 11293, 10.1039/C4NR03115F Baea, 2014, Dye decolorization test for the activity assessment of visible light photocatalysts: realities and limitations, Catal. Today, 224, 21, 10.1016/j.cattod.2013.12.019 Li, 2011, New photocatalyst BiOCl/BiOI composites with highly enhanced visible light photocatalytic performances, Dalton Trans., 40, 6751, 10.1039/c1dt10471c Li, 2012, Photoelectrochemical performance enhanced by a nickel oxide-hematite p–n junction photoanode, Chem. Commun., 48, 8213, 10.1039/c2cc30376k Meng, 2013, Solar hydrogen generation by nanoscale p–n junction of p-type molybdenum disulfide/n-type nitrogen-doped reduced grapheme oxide, J. Am. Chem. Soc., 135, 10286, 10.1021/ja404851s Zhang, 2013, Fabrication of NiS modified CdS nanorod p–n junction photocatalysts with enhanced visible-light photocatalytic H2-production activity, Phys. Chem. Chem. Phys., 15, 12088, 10.1039/c3cp50734c Chen, 2015, Noble-metal-free Cu2S-modified photocatalysts for enhanced photocatalytic hydrogen production by forming nanoscale p–n junction structure, RSC Adv., 5, 18159, 10.1039/C5RA00091B Wang, 2014, p–n junction CuO/BiVO4 heterogeneous nanostructures: synthesis and highly efficient visible-light photocatalytic performance, Dalton Trans., 43, 6735, 10.1039/c3dt53613k