Synthesis and characterization of high-performance novel thin film nanocomposite PRO membranes with tiered nanofiber support reinforced by functionalized carbon nanotubes
Tài liệu tham khảo
World Energy Resources: 2013, Survey Summary, World Energy Council, London, 2013.
Annual Energy Outlook 2014, U.S. Energy Information Administration, Washington DC, 2014.
Post, 2007, Salinity-gradient power: evaluation of pressure-retarded osmosis and reverse electrodialysis, J. Membr. Sci., 288, 218, 10.1016/j.memsci.2006.11.018
Loeb, 2002, Large-scale power production by pressure-retarded osmosis, using river water and sea water passing through spiral modules, Desalination, 143, 115, 10.1016/S0011-9164(02)00233-3
Loeb, 2001, One hundred and thirty benign and renewable megawatts from Great Salt Lake? The possibilities of hydroelectric power by pressure-retarded osmosis, Desalination, 141, 85, 10.1016/S0011-9164(01)00392-7
Loeb, 1998, Energy production at the Dead Sea by pressure-retarded osmosis: challenge or chimera?, Desalination, 120, 247, 10.1016/S0011-9164(98)00222-7
Pattle, 1954, Production of electric power by mixing fresh and salt water in the hydroelectric pile, Nature, 174, 660, 10.1038/174660a0
Norman, 1974, Water salination: a source of energy, Science, 186, 350, 10.1126/science.186.4161.350
Loeb, 1976, Production of energy from concentrated brines by pressure-retarded osmosis: I. Preliminary technical and economic correlations, J. Membr. Sci., 1, 49, 10.1016/S0376-7388(00)82257-7
Loeb, 1975, Osmotic power plants, Science, 189, 654, 10.1126/science.189.4203.654
Wick, 1978, Power from salinity gradients, Energy, 3, 95, 10.1016/0360-5442(78)90059-2
Isaacs, 1980, Ocean energy: forms and prospects, Science, 207, 256, 10.1126/science.207.4428.265
Reali, 1981, Submarine hydro-electro-osmotic power plants for an efficient exploitation of salinity gradients, Energy, 6, 227, 10.1016/0360-5442(81)90047-5
Bemporad, 1992, The use of pressure-retarded osmosis for increasing the solar pond efficiency, Sol. Energy, 48, 375, 10.1016/0038-092X(92)90046-D
Nijmeijer, 2010, Salinity gradient energy, 95, 10.1016/S1871-2711(09)00205-0
Thorsen, 2009, The potential for power production from salinity gradients by pressure retarded osmosis, J. Membr. Sci., 335, 103, 10.1016/j.memsci.2009.03.003
Li, 2013, Deformation and reinforcement of thin-film composite (TFC) polyamide-imide (PAI) membranes for osmotic power generation, J. Membr. Sci., 434, 204, 10.1016/j.memsci.2013.01.049
Chou, 2013, Robust and high performance hollow fiber membranes for energy harvesting from salinity gradients by pressure retarded osmosis, J. Membr. Sci., 448, 44, 10.1016/j.memsci.2013.07.063
Tiraferri, 2011, Relating performance of thin-film composite forward osmosis membranes to support layer formation and structure, J. Membr. Sci., 367, 340, 10.1016/j.memsci.2010.11.014
Han, 2013, Highly robust thin-film composite pressure retarded osmosis (PRO) hollow fiber membranes with high power densities for renewable salinity-gradient energy generation, Environ. Sci. Technol., 47, 8070, 10.1021/es4013917
Papkov, 2013, Simultaneously strong and tough ultrafine continuous nanofibers, ACS Nano, 7, 3324, 10.1021/nn400028p
Bui, 2014, Nanofiber supported thin-film composite membrane for pressure-retarded osmosis, Environ. Sci. Technol., 48, 4129, 10.1021/es4037012
Song, 2013, Energy recovery from concentrated seawater brine by thin-film nanofiber composite pressure retarded osmosis membranes with high power density, Energy Environ. Sci., 6, 1199, 10.1039/c3ee23349a
Goh, 2013, Fabrication of novel functionalized multi-walled carbon nanotube immobilized hollow fiber membranes for enhanced performance in forward osmosis process, J. Membr. Sci., 446, 244, 10.1016/j.memsci.2013.06.022
Wei, 2011, Influence of monomer concentrations on the performance of polyamide-based thin film composite forward osmosis membranes, J. Membr. Sci., 381, 110, 10.1016/j.memsci.2011.07.034
Liao, 2013, Fabrication of polyvinylidene fluoride (PVDF) nanofiber membranes by electro-spinning for direct contact membrane distillation, J. Membr. Sci., 425, 30, 10.1016/j.memsci.2012.09.023
Tang, 2010, Coupled effects of internal concentration polarization and fouling on flux behavior of forward osmosis membranes during humic acid filtration, J. Membr. Sci., 354, 123, 10.1016/j.memsci.2010.02.059
Wei, 2011, Synthesis and characterization of flat-sheet thin film composite forward osmosis membranes, J. Membr. Sci., 372, 292, 10.1016/j.memsci.2011.02.013
Wang, 2010, Characterization of novel forward osmosis hollow fiber membranes, J. Membr. Sci., 355, 158, 10.1016/j.memsci.2010.03.017
Naebe, 2010, Carbon nanotubes reinforced electrospun polymer nanofibres, 209
Ra, 2005, Anisotropic electrical conductivity of MWCNT/PAN nanofiber paper, Chem. Phys. Lett., 413, 188, 10.1016/j.cplett.2005.07.061
Mazinani, 2009, Morphology, structure and properties of conductive PS/CNT nanocomposite electrospun mat, Polymer, 50, 3329, 10.1016/j.polymer.2009.04.070
Zhang, 2013, Minimizing the instant and accumulative effects of salt permeability to sustain ultrahigh osmotic power density, Environ. Sci. Technol., 47, 10085, 10.1021/es402690v
Bui, 2013, Hydrophilic nanofibers as new supports for thin film composite membranes for engineered osmosis, Environ. Sci. Technol., 47, 1761, 10.1021/es304215g
Yoon, 2006, High flux ultrafiltration membranes based on electrospun nanofibrous PAN scaffolds and chitosan coating, Polymer, 47, 2434, 10.1016/j.polymer.2006.01.042