Synthesis and characterization of high-performance novel thin film nanocomposite PRO membranes with tiered nanofiber support reinforced by functionalized carbon nanotubes

Journal of Membrane Science - Tập 486 - Trang 151-160 - 2015
Miao Tian1,2, Rong Wang1,2, Kunli Goh2, Yuan Liao2, Anthony G. Fane1,2
1School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 639798, Singapore
2Singapore Membrane Technology Center, Nanyang Environmental and Water Research Institute, Nanyang Technological University, Singapore 637141, Singapore

Tài liệu tham khảo

World Energy Resources: 2013, Survey Summary, World Energy Council, London, 2013. Annual Energy Outlook 2014, U.S. Energy Information Administration, Washington DC, 2014. Post, 2007, Salinity-gradient power: evaluation of pressure-retarded osmosis and reverse electrodialysis, J. Membr. Sci., 288, 218, 10.1016/j.memsci.2006.11.018 Loeb, 2002, Large-scale power production by pressure-retarded osmosis, using river water and sea water passing through spiral modules, Desalination, 143, 115, 10.1016/S0011-9164(02)00233-3 Loeb, 2001, One hundred and thirty benign and renewable megawatts from Great Salt Lake? The possibilities of hydroelectric power by pressure-retarded osmosis, Desalination, 141, 85, 10.1016/S0011-9164(01)00392-7 Loeb, 1998, Energy production at the Dead Sea by pressure-retarded osmosis: challenge or chimera?, Desalination, 120, 247, 10.1016/S0011-9164(98)00222-7 Pattle, 1954, Production of electric power by mixing fresh and salt water in the hydroelectric pile, Nature, 174, 660, 10.1038/174660a0 Norman, 1974, Water salination: a source of energy, Science, 186, 350, 10.1126/science.186.4161.350 Loeb, 1976, Production of energy from concentrated brines by pressure-retarded osmosis: I. Preliminary technical and economic correlations, J. Membr. Sci., 1, 49, 10.1016/S0376-7388(00)82257-7 Loeb, 1975, Osmotic power plants, Science, 189, 654, 10.1126/science.189.4203.654 Wick, 1978, Power from salinity gradients, Energy, 3, 95, 10.1016/0360-5442(78)90059-2 Isaacs, 1980, Ocean energy: forms and prospects, Science, 207, 256, 10.1126/science.207.4428.265 Reali, 1981, Submarine hydro-electro-osmotic power plants for an efficient exploitation of salinity gradients, Energy, 6, 227, 10.1016/0360-5442(81)90047-5 Bemporad, 1992, The use of pressure-retarded osmosis for increasing the solar pond efficiency, Sol. Energy, 48, 375, 10.1016/0038-092X(92)90046-D Nijmeijer, 2010, Salinity gradient energy, 95, 10.1016/S1871-2711(09)00205-0 Thorsen, 2009, The potential for power production from salinity gradients by pressure retarded osmosis, J. Membr. Sci., 335, 103, 10.1016/j.memsci.2009.03.003 Li, 2013, Deformation and reinforcement of thin-film composite (TFC) polyamide-imide (PAI) membranes for osmotic power generation, J. Membr. Sci., 434, 204, 10.1016/j.memsci.2013.01.049 Chou, 2013, Robust and high performance hollow fiber membranes for energy harvesting from salinity gradients by pressure retarded osmosis, J. Membr. Sci., 448, 44, 10.1016/j.memsci.2013.07.063 Tiraferri, 2011, Relating performance of thin-film composite forward osmosis membranes to support layer formation and structure, J. Membr. Sci., 367, 340, 10.1016/j.memsci.2010.11.014 Han, 2013, Highly robust thin-film composite pressure retarded osmosis (PRO) hollow fiber membranes with high power densities for renewable salinity-gradient energy generation, Environ. Sci. Technol., 47, 8070, 10.1021/es4013917 Papkov, 2013, Simultaneously strong and tough ultrafine continuous nanofibers, ACS Nano, 7, 3324, 10.1021/nn400028p Bui, 2014, Nanofiber supported thin-film composite membrane for pressure-retarded osmosis, Environ. Sci. Technol., 48, 4129, 10.1021/es4037012 Song, 2013, Energy recovery from concentrated seawater brine by thin-film nanofiber composite pressure retarded osmosis membranes with high power density, Energy Environ. Sci., 6, 1199, 10.1039/c3ee23349a Goh, 2013, Fabrication of novel functionalized multi-walled carbon nanotube immobilized hollow fiber membranes for enhanced performance in forward osmosis process, J. Membr. Sci., 446, 244, 10.1016/j.memsci.2013.06.022 Wei, 2011, Influence of monomer concentrations on the performance of polyamide-based thin film composite forward osmosis membranes, J. Membr. Sci., 381, 110, 10.1016/j.memsci.2011.07.034 Liao, 2013, Fabrication of polyvinylidene fluoride (PVDF) nanofiber membranes by electro-spinning for direct contact membrane distillation, J. Membr. Sci., 425, 30, 10.1016/j.memsci.2012.09.023 Tang, 2010, Coupled effects of internal concentration polarization and fouling on flux behavior of forward osmosis membranes during humic acid filtration, J. Membr. Sci., 354, 123, 10.1016/j.memsci.2010.02.059 Wei, 2011, Synthesis and characterization of flat-sheet thin film composite forward osmosis membranes, J. Membr. Sci., 372, 292, 10.1016/j.memsci.2011.02.013 Wang, 2010, Characterization of novel forward osmosis hollow fiber membranes, J. Membr. Sci., 355, 158, 10.1016/j.memsci.2010.03.017 Naebe, 2010, Carbon nanotubes reinforced electrospun polymer nanofibres, 209 Ra, 2005, Anisotropic electrical conductivity of MWCNT/PAN nanofiber paper, Chem. Phys. Lett., 413, 188, 10.1016/j.cplett.2005.07.061 Mazinani, 2009, Morphology, structure and properties of conductive PS/CNT nanocomposite electrospun mat, Polymer, 50, 3329, 10.1016/j.polymer.2009.04.070 Zhang, 2013, Minimizing the instant and accumulative effects of salt permeability to sustain ultrahigh osmotic power density, Environ. Sci. Technol., 47, 10085, 10.1021/es402690v Bui, 2013, Hydrophilic nanofibers as new supports for thin film composite membranes for engineered osmosis, Environ. Sci. Technol., 47, 1761, 10.1021/es304215g Yoon, 2006, High flux ultrafiltration membranes based on electrospun nanofibrous PAN scaffolds and chitosan coating, Polymer, 47, 2434, 10.1016/j.polymer.2006.01.042