Biharmonic Kirchhoff Type Elliptic Systems with the Singular Exponential Nonlinearities in $$\mathbb {R}^4$$
Tóm tắt
In this paper, we study singular version of Adams–Moser–Trudinger inequality and its sharp concentration-compactness principle on the Cartesian product of second-order Sobolev spaces in
$$\mathbb {R}^4$$
. As an application of this inequality, we establish the existence of ground state solutions to biharmonic elliptic system of Kirchhoff type and involving nonlinearities with critical singular exponential growth at infinity. In particular, we give a more precise estimation than the ones in the existing literature about the minimax level.
Tài liệu tham khảo
Adimurthi: Existence of positive solutions of the semilinear Dirichlet problem with critical growth for the \(N\)-Laplacian. Ann. Sc. Norm. Super. Pisa Cl. Sci. 17(3), 393–413 (1990)
Adams, D. R.: A sharp inequality of J. Moser for higher order derivatives. Ann. Math. (2) 128(2), 385–398 (1988)
Adachi, S., Tanaka, K.: Trudinger type inequalities in \({\mathbb{R} }^{N}\) and their best exponents. Proc. Am. Math. Soc. 128(7), 2051–2057 (2000)
Brézis, H., Lieb, E.: A relation between pointwise convergence of functions and convergence of functionals. Proc. Am. Math. Soc. 88(3), 486–490 (1983)
Cerami, G.: On the existence of eigenvalues for a nonlinear boundary value problem. Ann. Mat. Pura Appl. (4) 124, 161–179 (1980). (Italian)
Chaharlang, M.M., Ragusa, M.A., Razani, A.: A sequence of radially symmetric weak solutions for some nonlocal elliptic problem in \({\mathbb{R} }^N\). Mediterr. J. Math. 17(2), 53 (2020)
Chen, L., Li, J., Lu, G., Zhang, C.: Sharpened Adams inequality and ground state solutions to the bi-Laplacian equation in \({\mathbb{R} }^4\). Adv. Nonlinear Stud. 18(3), 429–452 (2018)
Chen, L., Lu, G., Zhu, M.: Ground states of bi-harmonic equations with critical exponential growth involving constant and trapping potentials. Calc. Var. Partial Differ. Equ. 59(6), 185 (2020)
Chen, S., Tang, X., Wei, J.: Improved results on planar Kirchhoff-type elliptic problems with critical exponential growth. Z. Angew. Math. Phys. 72(1), 1–18 (2021)
Chen, S., Rŏdulescu, V.D., Tang, X., Wen, L.: Planar Kirchhoff equations with critical exponential growth and trapping potential. Math. Z. 302(2), 1061–1089 (2022)
de Souza, M.: On a singular class of elliptic systems involving critical growth in \({\mathbb{R} }^2\). Nonlinear Anal. Real World Appl. 12(2), 1072–1088 (2011)
Deng, S., Huang, T.: Ground state solutions for a Kirchhoff-type elliptic system involving critical exponential growth nonlinearities. Math. Methods Appl. Sci. 46(1), 215–231 (2023)
Deng, S., Tian, X.: On a nonhomogeneous Kirchhoff type elliptic system with the singular Trudinger–Moser growth. Discrete Contin. Dyn. Syst. 42(10), 4761–4786 (2022)
Deng, S., Tian, X.: Existence and multiplicity of solutions to a Kirchhoff type elliptic system with Trudinger–Moser growth. Results Math. 77(6), 231 (2022)
Eddine, N.C., Ouannasser, A.: Multiple solutions for nonlinear generalized-Kirchhoff type potential systems in unbounded domains. Filomat 37(13), 4317–4334 (2023)
Eddine, N.C., Ragusa, M.A.: Generalized critical Kirchhoff-type potential systems with Neumann boundary conditions. Appl. Anal. 101(11), 3958–3988 (2022)
Guariglia, E., Guido, R.C.: Chebyshev wavelet analysis J. Funct. Spaces, Art. ID 5542054 (2022)
Heydary, M.: Chebyshev cardinal wavelets for nonlinear variable-order fractional quadratic integral equations. Appl. Numer. Math. 144(1), 190–203 (2019)
Lions, J.-L.: On Some Questions in Boundary Value Problems of Mathematical Physics. North-Holland Math. Stud., vol. 30. North-Holland, Amsterdam (1978)
Lam, N., Lu, G.: Sharp Adams type inequalities in Sobolev spaces \(W^{m,\frac{n}{m}}({\mathbb{R} }^n)\) for arbitrary integer \(m\). J. Differ. Equ. 253(4), 1143–1171 (2012)
Lam, N., Lu, G.: A new approach to sharp Moser–Trudinger and Adams type inequalities: a rearrangement free argument. J. Differ. Equ. 255(3), 298–325 (2013)
Li, Y., Ruf, B.: A sharp Trudinger–Moser type inequality for unbounded domains in \({\mathbb{R} }^n\). Indiana Univ. Math. J. 57(1), 451–480 (2008)
Lou, Q.-J.: Multiplicity of positive solutions for Kirchhoff systems. Bull. Malays. Math. Sci. Soc. 43(5), 3529–3556 (2020)
Moser, J.: A sharp form of an inequality by N. Trudinger. Indiana Univ. Math. J. 20, 1077–1092 (1970/71)
Ragusa, M.A., Razani, A.: Weak solutions for a system of quasilinear elliptic equations. Contrib. Math. 1, 11–16 (2020)
Ruf, B.: A sharp Trudinger–Moser type inequality for unbounded domains in \({\mathbb{R} }^2\). J. Funct. Anal. 219(2), 340–367 (2005)
Silvestrov, S., Rancic, M.: Engineering Mathematics II, pp. 337–353. Springer, Berlin (2016)
Sun, D.D.: Ground state solutions of Schrödinger-Kirchhoff equations with potentials vanishing at infinity. J. Funct. Spaces, Art. ID 8829268 (2023)
Trudinger, N.S.: On imbeddings into Orlicz spaces and some applications. J. Math. Mech. 17, 473–483 (1967)
Willem, M.: Minimax Theorems. Birkhäuser, Boston (1996)
Yang, Y.: Adams type inequalities and related elliptic partial differential equations in dimension four. J. Differ. Equ. 252(3), 2266–2295 (2012)