Dimensionality reduction and polynomial chaos acceleration of Bayesian inference in inverse problems

Journal of Computational Physics - Tập 228 Số 6 - Trang 1862-1902 - 2009
Youssef Marzouk1, Habib N. Najm2
1Massachusetts Institute of Technology, Cambridge, MA 02139, USA
2Sandia National Laboratories, Livermore, CA 94551,#N#USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Vogel, 2002

Evans, 2002, Inverse problems as statistics, Inverse Problems, 18, R55, 10.1088/0266-5611/18/4/201

Tenorio, 2001, Statistical regularization of inverse problems, SIAM Rev., 43, 347, 10.1137/S0036144500358232

Kaipio, 2005

Tarantola, 2005

Marzouk, 2007, Stochastic spectral methods for efficient Bayesian solution of inverse problems, J. Comput. Phys., 224, 560, 10.1016/j.jcp.2006.10.010

Wiener, 1938, The homogeneous chaos, Am. J. Math., 60, 897, 10.2307/2371268

Cameron, 1947, The orthogonal development of nonlinear functionals in series of Fourier–Hermite functionals, Ann. Math., 48, 385, 10.2307/1969178

Ghanem, 1991

Xiu, 2002, The Wiener–Askey polynomial chaos for stochastic differential equations, SIAM J. Sci. Comput., 24, 619, 10.1137/S1064827501387826

Debusschere, 2004, Numerical challenges in the use of polynomial chaos representations for stochastic processes, SIAM J. Sci. Comput., 26, 698, 10.1137/S1064827503427741

Wan, 2005, An adaptive multi-element generalized polynomial chaos method for stochastic differential equations, J. Comput. Phys., 209, 617, 10.1016/j.jcp.2005.03.023

Ghanem, 1998, Probabilistic characterization of transport in heterogeneous media, Comput. Methods Appl. Mech. Eng., 158, 199, 10.1016/S0045-7825(97)00250-8

R. Ghanem, J. Red-Horse, A. Sarkar, Modal properties of a space-frame with localized system uncertainties, in: A. Kareem, A. Haldar, B.S., Jr., E. Johnson (Eds.), 8th ASCE Specialty Conference of Probabilistic Mechanics and Structural Reliability, PMC200-269, ASCE, 2000.

Le Maître, 2001, A stochastic projection method for fluid flow I. Basic formulation, J. Comput. Phys., 173, 481, 10.1006/jcph.2001.6889

Le Maître, 2002, A stochastic projection method for fluid flow II. Random process, J. Comput. Phys., 181, 9, 10.1006/jcph.2002.7104

Xiu, 2002, Stochastic modeling of flow-structure interactions using generalized polynomial chaos, ASME J. Fluids Eng., 124, 51, 10.1115/1.1436089

Debusschere, 2003, Protein labeling reactions in electrochemical microchannel flow: numerical simulation and uncertainty propagation, Phys. Fluids, 15, 2238, 10.1063/1.1582857

Reagan, 2004, Spectral stochastic uncertainty quantification in chemical systems, Comb. Theory Model., 8, 607, 10.1088/1364-7830/8/3/010

Wang, 2005, Using Bayesian statistics in the estimation of heat source in radiation, Int. J. Heat Mass Transfer, 48, 15, 10.1016/j.ijheatmasstransfer.2004.08.009

Berkooz, 1993, The proper orthogonal decomposition in the analysis of turbulent flows, Annu. Rev. Fluid Mech., 25, 539, 10.1146/annurev.fl.25.010193.002543

Balakrishnan, 2003, Uncertainty reduction and characterization for complex environmental fate and transport models: an empirical Bayesian framework incorporating the stochastic response surface method, Water Resour. Res., 39, 1350, 10.1029/2002WR001810

Kennedy, 2001, Bayesian calibration of computer models, J. Royal Stat. Soc.: Series B, 63, 425, 10.1111/1467-9868.00294

Christen, 2005, MCMC using an approximation, J. Comput. Graph. Stat., 14, 795, 10.1198/106186005X76983

Higdon, 2003, Markov chain Monte Carlo-based approaches for inference in computationally intensive inverse problems, Bayesian Stat., 7, 181

Geyer, 1991, Markov chain Monte Carlo maximum likelihood, vol. 23, 156

Efendiev, 2006, Preconditioning Markov chain Monte Carlo simulations using coarse-scale models, SIAM J. Sci. Comput., 28, 776, 10.1137/050628568

Lee, 2002, Markov random field models for high-dimensional parameters in simulations of fluid flow in porous media, Technometrics, 44, 230, 10.1198/004017002188618419

Wang, 2006, A Markov random field model of contamination source identification in porous media flow, Int. J. Heat Mass Transfer, 49, 939, 10.1016/j.ijheatmasstransfer.2005.09.016

Kaipio, 2007, Statistical inverse problems: discretization, model reduction, and inverse crimes, J. Comput. Appl. Math., 198, 493, 10.1016/j.cam.2005.09.027

Li, 2006, Efficient geostatistical inverse methods for structured and unstructured grids, Water Resour. Res., 42, W06402, 10.1029/2005WR004668

Xiu, 2002, Modeling uncertainty in steady state diffusion problems via generalized polynomial chaos, Comput. Methods Appl. Mech. Eng., 191, 4927, 10.1016/S0045-7825(02)00421-8

Le Maître, 2004, Natural convection in a closed cavity under stochastic, non-Boussinesq conditions, SIAM J. Sci. Comput., 26, 375, 10.1137/S1064827503422853

Frauenfelder, 2005, Finite elements for elliptic problems with stochastic coefficients, Comput. Methods Appl. Mech. Eng., 194, 205, 10.1016/j.cma.2004.04.008

Matthies, 2005, Galerkin methods for linear and nonlinear elliptic stochastic partial differential equations, Comput. Methods Appl. Mech. Eng., 194, 1295, 10.1016/j.cma.2004.05.027

Grigoriu, 2002

Hoel, 1987

Seeger, 2004, Gaussian processes for machine learning, Int. J. Neural Syst., 14, 1, 10.1142/S0129065704001899

Williams, 1996, Gaussian processes for regression, vol. 8

Cressie, 1993

Rasmussen, 2006

Genton, 2001, Classes of kernels for machine learning: a statistics perspective, J. Mach. Learning Res., 2, 299

Loève, 1978

Adler, 2007

P. Abrahamsen, A review of Gaussian random fields and correlation functions, Technical Report 917, Norwegian Computing Center, Oslo, Norway, 1997.

Courant, 1953, vol. 1

Sirovich, 1987, Turbulence and the dynamics of coherent structures. Part 1: coherent structures, Quart. Appl. Math., 45, 561, 10.1090/qam/910462

A. Mohammad-Djafari, Bayesian inference for inverse problems, in: Bayesian inference and Maximum Entropy Methods in Science and Engineering, vol. 21, 2002, pp. 477–496.

Aster, 2004

Gouveia, 1997, Resolution of seismic waveform inversion: Bayes versus Occam, Inverse Problems, 13, 323, 10.1088/0266-5611/13/2/009

Malinverno, 2002, Parsimonious Bayesian Markov chain Monte Carlo inversion in a nonlinear geophysical problem, Geophys. J. Int., 151, 675, 10.1046/j.1365-246X.2002.01847.x

Jackson, 2004, An efficient stochastic Bayesian approach to optimal parameter and uncertainty estimation for climate model predictions, J. Clim., 17, 2828, 10.1175/1520-0442(2004)017<2828:AESBAT>2.0.CO;2

Wang, 2005, Hierarchical Bayesian models for inverse problems in heat conduction, Inverse Prob., 21, 183, 10.1088/0266-5611/21/1/012

MacKay, 1999, Comparison of approximate methods for handling hyperparameters, Neural Comput., 11, 1035, 10.1162/089976699300016331

Gilks, 1996

Kakutani, 1961, Spectral analysis of stationary Gaussian processes, vol. 2, 239

Schoutens, 2000

Reagan, 2003, Uncertainty quantification in reacting flow simulations through non-intrusive spectral projection, Combustion and Flame, 132, 545, 10.1016/S0010-2180(02)00503-5

Wahba, 1990

Kimeldorf, 1970, A correspondence between Bayesian estimation on stochastic processes and smoothing by splines, Ann. Math. Stat., 41, 495, 10.1214/aoms/1177697089

Oliver, 1997, Markov chain Monte Carlo methods for conditioning a permeability field to pressure data, Math. Geol., 29, 61, 10.1007/BF02769620

Sommeijer, 1997, RKC: an explicit solver for parabolic PDEs, J. Comput. Appl. Math., 88, 315, 10.1016/S0377-0427(97)00219-7

J.G. Verwer, B.P. Sommeijer, W. Hundsdorfer, RKC time-stepping for advection–diffusion–reaction problems, CWI Report MAS-E0405, CWI, Amsterdam, The Netherlands, 2004.

Gelman, 2003

Gelman, 2006, Prior distributions for variance parameters in hierarchical models, Bayesian Anal., 1, 515, 10.1214/06-BA117A

H.K.H. Lee, C.H. Holloman, C.A. Calder, D.M. Higdon, Flexible Gaussian processes via convolution, Discussion paper 2002-09, Duke University, Department of Statistical Science, 2002.

Kaipio, 1999, Inverse problems with structural prior information, Inverse Prob., 15, 713, 10.1088/0266-5611/15/3/306

Calvetti, 2007, A Gaussian hypermodel to recover blocky objects, Inverse Prob., 23, 733, 10.1088/0266-5611/23/2/016

Press, 1992

Robert, 2004

Ghanem, 1999, The nonlinear Gaussian spectrum of log-normal stochastic processes and variables, ASME J. Appl. Mech., 66, 964, 10.1115/1.2791806

W. Luo, Wiener chaos expansion and numerical solutions of stochastic partial differential equations, Ph.D. thesis, California Institute of Technology, May 2006.

Dunkley, 2005, Fast and reliable Markov chain Monte Carlo technique for cosmological parameter estimation, Mon. Notices Roy. Astronom. Soc., 356, 925, 10.1111/j.1365-2966.2004.08464.x

Lorenz, 1963, Deterministic nonperiodic flow, J. Atmos. Sci., 20, 130, 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2

Hou, 2006, Wiener Chaos expansions and numerical solutions of randomly-forced equations of fluid mechanics, J. Comput. Phys., 216, 687, 10.1016/j.jcp.2006.01.008

Doostan, 2007, Stochastic model reduction for chaos representations, Comput. Methods Appl. Mech. Eng., 196, 3951, 10.1016/j.cma.2006.10.047

Babuška, 2007, A stochastic collocation method for elliptic partial differential equations with random input data, SIAM J. Numer. Anal., 45, 1005, 10.1137/050645142

Xiu, 2005, High-order collocation methods for differential equations with random inputs, SIAM J. Sci. Comput., 27, 1118, 10.1137/040615201

Kraut, 2004, A generalized Karhunen–Loève basis for efficient estimation of tropospheric refractivity using radar clutter, IEEE Trans. Signal Process., 52, 48, 10.1109/TSP.2003.820297

Aronszajn, 1950, Theory of reproducing kernels, Trans. Am. Math. Soc., 68, 337, 10.1090/S0002-9947-1950-0051437-7