Dimensionality reduction and polynomial chaos acceleration of Bayesian inference in inverse problems
Tóm tắt
Từ khóa
Tài liệu tham khảo
Vogel, 2002
Tenorio, 2001, Statistical regularization of inverse problems, SIAM Rev., 43, 347, 10.1137/S0036144500358232
Kaipio, 2005
Tarantola, 2005
Marzouk, 2007, Stochastic spectral methods for efficient Bayesian solution of inverse problems, J. Comput. Phys., 224, 560, 10.1016/j.jcp.2006.10.010
Cameron, 1947, The orthogonal development of nonlinear functionals in series of Fourier–Hermite functionals, Ann. Math., 48, 385, 10.2307/1969178
Ghanem, 1991
Xiu, 2002, The Wiener–Askey polynomial chaos for stochastic differential equations, SIAM J. Sci. Comput., 24, 619, 10.1137/S1064827501387826
Debusschere, 2004, Numerical challenges in the use of polynomial chaos representations for stochastic processes, SIAM J. Sci. Comput., 26, 698, 10.1137/S1064827503427741
Wan, 2005, An adaptive multi-element generalized polynomial chaos method for stochastic differential equations, J. Comput. Phys., 209, 617, 10.1016/j.jcp.2005.03.023
Ghanem, 1998, Probabilistic characterization of transport in heterogeneous media, Comput. Methods Appl. Mech. Eng., 158, 199, 10.1016/S0045-7825(97)00250-8
R. Ghanem, J. Red-Horse, A. Sarkar, Modal properties of a space-frame with localized system uncertainties, in: A. Kareem, A. Haldar, B.S., Jr., E. Johnson (Eds.), 8th ASCE Specialty Conference of Probabilistic Mechanics and Structural Reliability, PMC200-269, ASCE, 2000.
Le Maître, 2001, A stochastic projection method for fluid flow I. Basic formulation, J. Comput. Phys., 173, 481, 10.1006/jcph.2001.6889
Le Maître, 2002, A stochastic projection method for fluid flow II. Random process, J. Comput. Phys., 181, 9, 10.1006/jcph.2002.7104
Xiu, 2002, Stochastic modeling of flow-structure interactions using generalized polynomial chaos, ASME J. Fluids Eng., 124, 51, 10.1115/1.1436089
Debusschere, 2003, Protein labeling reactions in electrochemical microchannel flow: numerical simulation and uncertainty propagation, Phys. Fluids, 15, 2238, 10.1063/1.1582857
Reagan, 2004, Spectral stochastic uncertainty quantification in chemical systems, Comb. Theory Model., 8, 607, 10.1088/1364-7830/8/3/010
Wang, 2005, Using Bayesian statistics in the estimation of heat source in radiation, Int. J. Heat Mass Transfer, 48, 15, 10.1016/j.ijheatmasstransfer.2004.08.009
Berkooz, 1993, The proper orthogonal decomposition in the analysis of turbulent flows, Annu. Rev. Fluid Mech., 25, 539, 10.1146/annurev.fl.25.010193.002543
Balakrishnan, 2003, Uncertainty reduction and characterization for complex environmental fate and transport models: an empirical Bayesian framework incorporating the stochastic response surface method, Water Resour. Res., 39, 1350, 10.1029/2002WR001810
Kennedy, 2001, Bayesian calibration of computer models, J. Royal Stat. Soc.: Series B, 63, 425, 10.1111/1467-9868.00294
Christen, 2005, MCMC using an approximation, J. Comput. Graph. Stat., 14, 795, 10.1198/106186005X76983
Higdon, 2003, Markov chain Monte Carlo-based approaches for inference in computationally intensive inverse problems, Bayesian Stat., 7, 181
Geyer, 1991, Markov chain Monte Carlo maximum likelihood, vol. 23, 156
Efendiev, 2006, Preconditioning Markov chain Monte Carlo simulations using coarse-scale models, SIAM J. Sci. Comput., 28, 776, 10.1137/050628568
Lee, 2002, Markov random field models for high-dimensional parameters in simulations of fluid flow in porous media, Technometrics, 44, 230, 10.1198/004017002188618419
Wang, 2006, A Markov random field model of contamination source identification in porous media flow, Int. J. Heat Mass Transfer, 49, 939, 10.1016/j.ijheatmasstransfer.2005.09.016
Kaipio, 2007, Statistical inverse problems: discretization, model reduction, and inverse crimes, J. Comput. Appl. Math., 198, 493, 10.1016/j.cam.2005.09.027
Li, 2006, Efficient geostatistical inverse methods for structured and unstructured grids, Water Resour. Res., 42, W06402, 10.1029/2005WR004668
Xiu, 2002, Modeling uncertainty in steady state diffusion problems via generalized polynomial chaos, Comput. Methods Appl. Mech. Eng., 191, 4927, 10.1016/S0045-7825(02)00421-8
Le Maître, 2004, Natural convection in a closed cavity under stochastic, non-Boussinesq conditions, SIAM J. Sci. Comput., 26, 375, 10.1137/S1064827503422853
Frauenfelder, 2005, Finite elements for elliptic problems with stochastic coefficients, Comput. Methods Appl. Mech. Eng., 194, 205, 10.1016/j.cma.2004.04.008
Matthies, 2005, Galerkin methods for linear and nonlinear elliptic stochastic partial differential equations, Comput. Methods Appl. Mech. Eng., 194, 1295, 10.1016/j.cma.2004.05.027
Grigoriu, 2002
Hoel, 1987
Seeger, 2004, Gaussian processes for machine learning, Int. J. Neural Syst., 14, 1, 10.1142/S0129065704001899
Williams, 1996, Gaussian processes for regression, vol. 8
Cressie, 1993
Rasmussen, 2006
Genton, 2001, Classes of kernels for machine learning: a statistics perspective, J. Mach. Learning Res., 2, 299
Loève, 1978
Adler, 2007
P. Abrahamsen, A review of Gaussian random fields and correlation functions, Technical Report 917, Norwegian Computing Center, Oslo, Norway, 1997.
Courant, 1953, vol. 1
Sirovich, 1987, Turbulence and the dynamics of coherent structures. Part 1: coherent structures, Quart. Appl. Math., 45, 561, 10.1090/qam/910462
A. Mohammad-Djafari, Bayesian inference for inverse problems, in: Bayesian inference and Maximum Entropy Methods in Science and Engineering, vol. 21, 2002, pp. 477–496.
Aster, 2004
Gouveia, 1997, Resolution of seismic waveform inversion: Bayes versus Occam, Inverse Problems, 13, 323, 10.1088/0266-5611/13/2/009
Malinverno, 2002, Parsimonious Bayesian Markov chain Monte Carlo inversion in a nonlinear geophysical problem, Geophys. J. Int., 151, 675, 10.1046/j.1365-246X.2002.01847.x
Jackson, 2004, An efficient stochastic Bayesian approach to optimal parameter and uncertainty estimation for climate model predictions, J. Clim., 17, 2828, 10.1175/1520-0442(2004)017<2828:AESBAT>2.0.CO;2
Wang, 2005, Hierarchical Bayesian models for inverse problems in heat conduction, Inverse Prob., 21, 183, 10.1088/0266-5611/21/1/012
MacKay, 1999, Comparison of approximate methods for handling hyperparameters, Neural Comput., 11, 1035, 10.1162/089976699300016331
Gilks, 1996
Kakutani, 1961, Spectral analysis of stationary Gaussian processes, vol. 2, 239
Schoutens, 2000
Reagan, 2003, Uncertainty quantification in reacting flow simulations through non-intrusive spectral projection, Combustion and Flame, 132, 545, 10.1016/S0010-2180(02)00503-5
Wahba, 1990
Kimeldorf, 1970, A correspondence between Bayesian estimation on stochastic processes and smoothing by splines, Ann. Math. Stat., 41, 495, 10.1214/aoms/1177697089
Oliver, 1997, Markov chain Monte Carlo methods for conditioning a permeability field to pressure data, Math. Geol., 29, 61, 10.1007/BF02769620
Sommeijer, 1997, RKC: an explicit solver for parabolic PDEs, J. Comput. Appl. Math., 88, 315, 10.1016/S0377-0427(97)00219-7
J.G. Verwer, B.P. Sommeijer, W. Hundsdorfer, RKC time-stepping for advection–diffusion–reaction problems, CWI Report MAS-E0405, CWI, Amsterdam, The Netherlands, 2004.
Gelman, 2003
Gelman, 2006, Prior distributions for variance parameters in hierarchical models, Bayesian Anal., 1, 515, 10.1214/06-BA117A
H.K.H. Lee, C.H. Holloman, C.A. Calder, D.M. Higdon, Flexible Gaussian processes via convolution, Discussion paper 2002-09, Duke University, Department of Statistical Science, 2002.
Kaipio, 1999, Inverse problems with structural prior information, Inverse Prob., 15, 713, 10.1088/0266-5611/15/3/306
Calvetti, 2007, A Gaussian hypermodel to recover blocky objects, Inverse Prob., 23, 733, 10.1088/0266-5611/23/2/016
Press, 1992
Robert, 2004
Ghanem, 1999, The nonlinear Gaussian spectrum of log-normal stochastic processes and variables, ASME J. Appl. Mech., 66, 964, 10.1115/1.2791806
W. Luo, Wiener chaos expansion and numerical solutions of stochastic partial differential equations, Ph.D. thesis, California Institute of Technology, May 2006.
Dunkley, 2005, Fast and reliable Markov chain Monte Carlo technique for cosmological parameter estimation, Mon. Notices Roy. Astronom. Soc., 356, 925, 10.1111/j.1365-2966.2004.08464.x
Lorenz, 1963, Deterministic nonperiodic flow, J. Atmos. Sci., 20, 130, 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
Hou, 2006, Wiener Chaos expansions and numerical solutions of randomly-forced equations of fluid mechanics, J. Comput. Phys., 216, 687, 10.1016/j.jcp.2006.01.008
Doostan, 2007, Stochastic model reduction for chaos representations, Comput. Methods Appl. Mech. Eng., 196, 3951, 10.1016/j.cma.2006.10.047
Babuška, 2007, A stochastic collocation method for elliptic partial differential equations with random input data, SIAM J. Numer. Anal., 45, 1005, 10.1137/050645142
Xiu, 2005, High-order collocation methods for differential equations with random inputs, SIAM J. Sci. Comput., 27, 1118, 10.1137/040615201
Kraut, 2004, A generalized Karhunen–Loève basis for efficient estimation of tropospheric refractivity using radar clutter, IEEE Trans. Signal Process., 52, 48, 10.1109/TSP.2003.820297