Ephrin-B2 controls VEGF-induced angiogenesis and lymphangiogenesis

Nature - Tập 465 Số 7297 - Trang 483-486 - 2010
Yingdi Wang1, Masanori Nakayama2, Mara E. Pitulescu2, Tim Schmidt1, Magdalena L. Bochenek2,3, Akira Sakakibara1, Susanne Adams2,1, Alice Davy4, Urban Deutsch5, Urs Lüthi6, Alcide Barberis6, Laura E. Benjamin7, Taija Mäkinen8, Catherine D. Nobes3, Ralf H. Adams2,1
1Vascular Development Laboratory, Cancer Research UK London Research Institute, London WC2A 3PX, UK.
2Department of Tissue Morphogenesis, Max-Planck-Institute for Molecular Biomedicine, and Faculty of Medicine, University of Münster, D-48149 Münster, Germany
3Departments of Physiology & Pharmacology and Biochemistry, School of Medical Sciences, University of Bristol, Bristol BS6 6BS, UK
4Centre de Biologie du Développement, Université de Toulouse, CNRS, CBD UMR 5547, F-31062 Toulouse cedex 9, France ,
5Theodor Kocher Institute, University of Berne, CH 3012 Bern, Switzerland
6Oncalis AG, Schlieren, Switzerland
7Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215-5501, USA ,
8Cancer Research UK London Research Institute, Lymphatic Development Laboratory, London WC2A 3PX, UK

Tóm tắt

Từ khóa


Tài liệu tham khảo

Adams, R. H. & Alitalo, K. Molecular regulation of angiogenesis and lymphangiogenesis. Nature Rev. Mol. Cell Biol. 8, 464–478 (2007)

Gerhardt, H. & Betsholtz, C. How do endothelial cells orientate? Experientia Suppl. 94, 3–15 (2005)

Klagsbrun, M. & Eichmann, A. A role for axon guidance receptors and ligands in blood vessel development and tumor angiogenesis. Cytokine Growth Factor Rev. 16, 535–548 (2005)

Arvanitis, D. & Davy, A. Eph/ephrin signaling: networks. Genes Dev. 22, 416–429 (2008)

Egea, J. & Klein, R. Bidirectional Eph-ephrin signaling during axon guidance. Trends Cell Biol. 17, 230–238 (2007)

Poliakov, A., Cotrina, M. & Wilkinson, D. G. Diverse roles of eph receptors and ephrins in the regulation of cell migration and tissue assembly. Dev. Cell 7, 465–480 (2004)

Pasquale, E. B. Eph receptor signalling casts a wide net on cell behaviour. Nature Rev. Mol. Cell Biol. 6, 462–475 (2005)

Lawson, N. D. & Weinstein, B. M. Arteries and veins: making a difference with zebrafish. Nature Rev. Genet. 3, 674–682 (2002)

Lamont, R. E. & Childs, S. MAPping out arteries and veins. Sci. STKE 2006, pe39 (2006)

le Noble, F. et al. Flow regulates arterial–venous differentiation in the chick embryo yolk sac. Development 131, 361–375 (2004)

Wang, H. U., Chen, Z. F. & Anderson, D. J. Molecular distinction and angiogenic interaction between embryonic arteries and veins revealed by ephrin-B2 and its receptor Eph-B4. Cell 93, 741–753 (1998)

Gerety, S. S., Wang, H. U., Chen, Z. F. & Anderson, D. J. Symmetrical mutant phenotypes of the receptor EphB4 and its specific transmembrane ligand ephrin-B2 in cardiovascular development. Mol. Cell 4, 403–414 (1999)

Adams, R. H. et al. Roles of ephrinB ligands and EphB receptors in cardiovascular development: demarcation of arterial/venous domains, vascular morphogenesis, and sprouting angiogenesis. Genes Dev. 13, 295–306 (1999)

Shin, D. et al. Expression of ephrinB2 identifies a stable genetic difference between arterial and venous vascular smooth muscle as well as endothelial cells, and marks subsets of microvessels at sites of adult neovascularization. Dev. Biol. 230, 139–150 (2001)

Gale, N. W. et al. Ephrin-B2 selectively marks arterial vessels and neovascularization sites in the adult, with expression in both endothelial and smooth-muscle cells. Dev. Biol. 230, 151–160 (2001)

Davy, A. & Soriano, P. Ephrin-B2 forward signaling regulates somite patterning and neural crest cell development. Dev. Biol. 304, 182–193 (2007)

Taylor, A. C., Murfee, W. L. & Peirce, S. M. EphB4 expression along adult rat microvascular networks: EphB4 is more than a venous specific marker. Microcirculation 14, 253–267 (2007)

Zhu, Z., Zheng, T., Lee, C. G., Homer, R. J. & Elias, J. A. Tetracycline-controlled transcriptional regulation systems: advances and application in transgenic animal modeling. Semin. Cell Dev. Biol. 13, 121–128 (2002)

Sun, J. F. et al. Microvascular patterning is controlled by fine-tuning the Akt signal. Proc. Natl Acad. Sci. USA 102, 128–133 (2005)

Baluk, P., Hashizume, H. & McDonald, D. M. Cellular abnormalities of blood vessels as targets in cancer. Curr. Opin. Genet. Dev. 15, 102–111 (2005)

Makinen, T. et al. PDZ interaction site in ephrinB2 is required for the remodeling of lymphatic vasculature. Genes Dev. 19, 397–410 (2005)

Tammela, T. et al. Blocking VEGFR-3 suppresses angiogenic sprouting and vascular network formation. Nature 454, 656–660 (2008)

Tammela, T., Enholm, B., Alitalo, K. & Paavonen, K. The biology of vascular endothelial growth factors. Cardiovasc. Res. 65, 550–563 (2005)

McColl, B. K., Stacker, S. A. & Achen, M. G. Molecular regulation of the VEGF family–inducers of angiogenesis and lymphangiogenesis. APMIS 112, 463–480 (2004)

Zachary, I. & Gliki, G. Signaling transduction mechanisms mediating biological actions of the vascular endothelial growth factor family. Cardiovasc. Res. 49, 568–581 (2001)

Olsson, A. K., Dimberg, A., Kreuger, J. & Claesson-Welsh, L. VEGF receptor signalling – in control of vascular function. Nature Rev. Mol. Cell Biol. 7, 359–371 (2006)

Macia, E. et al. Dynasore, a cell-permeable inhibitor of dynamin. Dev. Cell 10, 839–850 (2006)

Sawamiphak, S. et al. Ephrin-B2 regulates VEGF-R2 function in developmental and tumour angiogenesis. Nature 10.1038/nature08995 (this issue)

Grunwald, I. C. et al. Hippocampal plasticity requires postsynaptic ephrinBs. Nature Neurosci. 7, 33–40 (2004)

Foo, S. S. et al. Ephrin-B2 controls cell motility and adhesion during blood-vessel-wall assembly. Cell 124, 161–173 (2006)

Deutsch, U. et al. Inducible endothelial cell-specific gene expression in transgenic mouse embryos and adult mice. Exp. Cell Res. 314, 1202–1216 (2008)

Osoegawa, K. et al. Bacterial artificial chromosome libraries for mouse sequencing and functional analysis. Genome Res. 10, 116–128 (2000)

Feil, R., Wagner, J., Metzger, D. & Chambon, P. Regulation of Cre recombinase activity by mutated estrogen receptor ligand-binding domains. Biochem. Biophys. Res. Commun. 237, 752–757 (1997)

Copeland, N. G., Jenkins, N. A. & Court, D. L. Recombineering: a powerful new tool for mouse functional genomics. Nature Rev. Genet. 2, 769–779 (2001)

Soriano, P. Generalized lacZ expression with the ROSA26 Cre reporter strain. Nature Genet. 21, 70–71 (1999)

Jat, P. S. et al. Direct derivation of conditionally immortal cell lines from an H-2Kb-tsA58 transgenic mouse. Proc. Natl Acad. Sci. USA 88, 5096–5100 (1991)

Morgan, S. M., Samulowitz, U., Darley, L., Simmons, D. L. & Vestweber, D. Biochemical characterization and molecular cloning of a novel endothelial-specific sialomucin. Blood 93, 165–175 (1999)

Lawson, N. D. & Weinstein, B. M. In vivo imaging of embryonic vascular development using transgenic zebrafish. Dev. Biol. 248, 307–318 (2002)