Deep convolution neural network for accurate diagnosis of glaucoma using digital fundus images
Tài liệu tham khảo
Barton, 2013, Medical management of glaucoma, 71
Nayak, 2009, Automated diagnosis of glaucoma using digital fundus images, J. Med. Syst., 33, 337, 10.1007/s10916-008-9195-z
http://www.mayoclinic.org/diseases-conditions/glaucoma/basics/symptoms/con-20024042 (accessed 14 June, 2017).
http://www.glaucoma.org/glaucoma/diagnostic-tests.php (accessed 21 July, 2017).
Rajendra Acharya, 2015, Decision support system for the glaucoma using Gabor transformation, Biomed. Signal Process. Control, 15, 18, 10.1016/j.bspc.2014.09.004
Fujita, 2008, Computer-aided diagnosis: the emerging of three CAD systems induced by Japanese health care needs, Comput. Methods Programs Biomed., 92, 238, 10.1016/j.cmpb.2008.04.003
U. Rajendra Acharya, H. Fujita, O. S. Lih, Y. Hagiwara, J. H. Tan, and M. Adam. ``Automated detection of arrhythmias using different intervals of tachycardia ECG segments with convolutional neural network.'' Inf. Sci., 405(2017): 81–90.
Noronha, 2014, Automated classification of glaucoma stages using higher order cumulant features, Biomed. Signal Process. Control, 10, 174, 10.1016/j.bspc.2013.11.006
Mookiah, 2012, Data mining technique for automated diagnosis of glaucoma using higher order spectra and wavelet energy features, Knowl.-Based Syst., 33, 73, 10.1016/j.knosys.2012.02.010
Maheshwari, 2016, Automated diagnosis of glaucoma using empirical wavelet transform and correntropy features extracted from fundus images, IEEE J. Biomed. Health Inf., 21, 803, 10.1109/JBHI.2016.2544961
Dua, 2012, Wavelet-based energy features for glaucomatous image classification, IEEE Trans. Inf. Technol. Biomed., 16, 80, 10.1109/TITB.2011.2176540
Mookiah, 2013, Automated glaucoma detection using hybrid feature extraction in retinal fundus images, J. Mech. Med. Biol., 13
Simonthomas, 2014, Automated diagnosis of glaucoma using Haralick texture features, 1
Gayathri, 2014, Automated glaucoma detection system based on wavelet energy features and ANN, 2808
Gajbhiye, 2015, Automatic classification of glaucomatous images using wavelet and moment feature, 1
Chrástek, 2005, Automated segmentation of the optic nerve head for diagnosis of glaucoma, Med. Image Anal., 9, 297, 10.1016/j.media.2004.12.004
Yin, 2012, Automated segmentation of optic disc and optic cup in fundus images for glaucoma diagnosis, 1
Grau, 2006, Segmentation of trabeculated structures using an anisotropic Markov random field: application to the study of the optic nerve head in glaucoma, IEEE Trans. Med. Imaging, 25, 245, 10.1109/TMI.2005.862743
Fink, 2008, ICA analysis of retina images for glaucoma classification, 4664
Xu, 2011, Sliding window and regression based cup detection in digital fundus images for glaucoma diagnosis, Med. Image Comput. Comput.-Assist. Interv., 14, 1
Matsopoulos, 2008, Detection of glaucomatous change based on vessel shape analysis, Comput. Med. Imaging Graph., 32, 183, 10.1016/j.compmedimag.2007.11.003
Annu, 2013, Automated classification of glaucoma images by wavelet energy features, Int. J. Eng. Technol., 5, 1716
Acharya, 2011, Automated diagnosis of glaucoma using texture and higher order spectra features, IEEE Trans. Inf. Technol. Biomed., 15, 449, 10.1109/TITB.2011.2119322
Rajendra Acharya, 2017, A novel algorithm to detect glaucoma risk using texton and local configuration pattern features extracted from fundus images, Comput. Biol. Med., 88, 72, 10.1016/j.compbiomed.2017.06.022
Riesenhuber, 1999, Hierarchical models of object recognition in cortex, Nat. Neurosci., 2, 1019, 10.1038/14819
Cireşan, 2011, A committee of neural networks for traffic sign classification, 1918
Scherer, 2010, Evaluation of pooling operations in convolutional architectures for object recognition, 82
Serre, 2005, Object recognition with features inspired by visual cortex, 994
Lawrence, 1997, Face recognition: a convolutional neural-network approach, IEEE Trans. Neural Networks, 8, 98, 10.1109/72.554195
Acharya, 2017, Automated detection of coronary artery disease using different durations of ECG segments with convolutional neural network, Knowl.-Based Syst., 132, 62, 10.1016/j.knosys.2017.06.003
Tan, 2017, Segmentation of optic disc, fovea and retinal vasculature using a single convolutional neural network, J. Comput. Sci., 20, 70, 10.1016/j.jocs.2017.02.006
Maheshwari, 2017, Iterative variational mode decomposition based automated detection of glaucoma using fundus images, Comput. Biol. Med., 88, 142, 10.1016/j.compbiomed.2017.06.017
Acharya, 2017, Automated identification of shockable and non-shockable life-threatening ventricular arrhythmias using convolutional neural network, Fut. Gen. Comput. Syst., 79, 952, 10.1016/j.future.2017.08.039
Lim, 2012, A survey and comparative study on the instruments for glaucoma detection, Med. Eng. Phys., 34, 129, 10.1016/j.medengphy.2011.07.030
Acharya, 2008, Image Modeling of the Human Eye
Bourne, 2006, The optic nerve head in glaucoma, Commun. Eye Health, 19, 44
Sommer, 1991, Relationship between intraocular pressure and primary open angle glaucoma among white and black Americans. The baltimore eye survey, Arch. Ophthalmol., 109, 1090, 10.1001/archopht.1991.01080080050026
Quigley, 2006, The number of people with glaucoma worldwide in 2010 and 2020, Br. J. Ophthalmol., 90, 262, 10.1136/bjo.2005.081224
Goldmann, 1957, Applanation tonometry, Ophthalmologica, 134, 221, 10.1159/000303213
Burgoyne, 2010, 1
2004, Prevalence of open-angle glaucoma among adults in the United States, Arch. Ophthalmol., 122, 532, 10.1001/archopht.122.4.532
Acharya, 2016, Automated screening system for retinal health using bi-dimensional empirical mode decomposition and integrated index, Comput. Biol. Med., 75, 54, 10.1016/j.compbiomed.2016.04.015
Chen, 2015, Glaucoma detection based on deep convolutional neural network, 715
Hossein H., B. Xiao, M. Jaiswal, R. Poovendran, On the Limitation of Convolutional Neural Networks in Recognizing Negative Images, (2017), arXiv:1703.06857v2.
Raghavendra, 2017, Novel expert system for glaucoma identification using non-parametric spatial envelope energy spectrum with fundus images, Biocybern. Biomed. Eng.