Self-cleaning properties of L-Histidine doped TiO2-CdS/PES nanocomposite membrane: Fabrication, characterization and performance
Tài liệu tham khảo
Zangeneh, 2019, Preparation and characterization of a novel photocatalytic self-cleaning PES nanofiltration membrane by embedding a visible-driven photocatalyst boron doped-TiO2-SiO2/CoFe2O4 nanoparticles, Sep. Purif. Technol., 209, 764, 10.1016/j.seppur.2018.09.030
Pirsaheb, 2015, Process modeling and optimization of biological removal of carbon, nitrogen and phosphorus from hospital wastewater in a continuous feeding & intermittent discharge (CFID) bioreactor, Korean J. Chem. Eng., 32, 1340, 10.1007/s11814-014-0365-z
Amini, 2013, Determination of optimum conditions for dairy wastewater treatment in UAASB reactor for removal of nutrients, Bioresource Technol., 145, 71, 10.1016/j.biortech.2013.01.111
Asadi, 2012, Simultaneous removal of carbon and nutrients from an industrial estate wastewater in a single up-flow aerobic/anoxic sludge bed (UAASB) bioreactor, Wat. Res., 46, 4587, 10.1016/j.watres.2012.06.029
Pirsaheb, 2009, Kinetic evaluation and process performance of a fixed film bioreactor removing phthalic acid and dimethyl phthalate, J. Hazard. Mat., 167, 500, 10.1016/j.jhazmat.2009.01.003
Zinatizadeh, 2006
Ghasemi, 2016, Preparation, characterization and photocatalytic application of TiO2/Fe-ZSM-5 nanocomposite for the treatment of petroleum refinery wastewater: optimization of process parameters by response surface methodology, Chemosphere, 159, 552, 10.1016/j.chemosphere.2016.06.058
Ghasemi, 2016, Kinetics and thermodynamics of photocatalytic degradation of organic pollutants in petroleum refinery wastewater over nano-TiO2 supported on Fe-ZSM-5, J. Taiwan Inst. Chem. Eng., 65, 357, 10.1016/j.jtice.2016.05.039
Abbasi, 2020, novel single continuous electrocoagulation process for treatment of licorice processing wastewater: optimization of operating factors using RSM, Process Safety Env. Prot., 134, 323, 10.1016/j.psep.2019.12.005
Birjandi, 2013, Optimization of coagulation-flocculation treatment on paper-recycling wastewater: application of response surface methodology, J. Environ. Sci. Health-Part A Toxic/Hazard. Substan. Environ. Eng., 48, 1573, 10.1080/10934529.2013.797307
Sharafi, 2015, Adsorptive removal of methylene blue from aqueous solutions by pumice powder: process modelling and kinetic evaluation, Environ. Eng. and Manage. J., 14, 1067, 10.30638/eemj.2015.118
Rahimi, 2016, Hydrophilic goethite nanoparticle as a novel antifouling agent in fabrication of nanocomposite polyethersulfone membrane, J. Appl. Polym. Sci., 133, 10.1002/app.43592
Mansouri, 2012, Hydraulic characteristics analysis of an anaerobic rotatory biological contactor (AnRBC) using tracer experiments and response surface methodology (RSM), Korean J. Chem. Eng., 29, 891, 10.1007/s11814-011-0269-0
Bonakdari, 2011, Influence of position and type of Doppler flow meters on flow-rate measurement in sewers using computational fluid dynamic, Flow Meas. Instrum., 22, 225, 10.1016/j.flowmeasinst.2011.03.001
M. Tavakol Moghadam, G. Lesage, T. Mohammadi, J.-P. Mericq, J. Mendret, M. Heran, C. Faur, S. Brosillon, M. Hemmati, F. Naeimpoor, Improved antifouling properties of TiO2/PVDF nanocomposite membranes in UV-coupled ultrafiltration, J. Appl. Polymer Sci. 132 (2015) 41731. Doi: 10.1002/app.41731.
Zhang, 2006, Fabrication and characterization of silica/titania nanotubes composite membrane with photocatalytic capability, Environ. Sci. Technol., 40, 6104, 10.1021/es060092d
Kuvarega, 2018, Polysulfone/N, Pd co-doped TiO2 composite membranes for photocatalytic dye degradation, Sep. Purif. Technol., 191, 122, 10.1016/j.seppur.2017.07.064
Yang, 2019, Enhanced permeability, contaminants removal and antifouling ability of CNTs-based hollow fiber membranes under electrochemical assistance, J. Membr. Sci., 582, 335, 10.1016/j.memsci.2019.04.026
Zangeneh, 2018, A novel photocatalytic self-cleaning PES nanofiltration membrane incorporating triple metal-nonmetal doped TiO2 (K-B-N-TiO2) for post treatment of biologically treated palm oil mill effluent, React. Funct. Polym., 127, 139, 10.1016/j.reactfunctpolym.2018.04.008
Rahimi, 2015, Preparation of high antibiofouling amino functionalized MWCNTs/PES nanocomposite ultrafiltration membrane for application in membrane bioreactor, J. Ind. Eng. Chem., 29, 366, 10.1016/j.jiec.2015.04.017
Zhan, 2018, UV-induced self-cleanable TiO2/nanocellulose membrane for selective separation of oil/water emulsion, Carbohyd. Polym., 201, 464, 10.1016/j.carbpol.2018.08.093
Safarpour, 2016, Preparation and characterization of graphene oxide/TiO2 blended PES nanofiltration membrane with improved antifouling and separation performance, Desalination, 393, 65, 10.1016/j.desal.2015.07.003
Gao, 2014, Membrane surface modification with TiO2–graphene oxide for enhanced photocatalytic performance, J. Membr. Sci., 455, 349, 10.1016/j.memsci.2014.01.011
Hong, 2014, Polyvinylidene fluoride ultrafiltration membrane blended with nano-ZnO particle for photo-catalysis self-cleaning, Desalination, 332, 67, 10.1016/j.desal.2013.10.026
Zinadini, 2017, Magnetic field-augmented coagulation bath during phase inversion for preparation of ZnFe2O4/SiO2/PES nanofiltration membrane: a novel method for flux enhancement and fouling resistance, J. Ind. Eng. Chem., 46, 9, 10.1016/j.jiec.2016.08.005
Leong, 2014, TiO2 based photocatalytic membranes: a review, J. Membr. Sci., 472, 167, 10.1016/j.memsci.2014.08.016
Yao, 2015, One-pot approach for synthesis of N-doped TiO2/ZnFe2O4 hybrid as an efficient photocatalyst for degradation of aqueous organic pollutants, J. Hazard. Mater., 291, 28, 10.1016/j.jhazmat.2015.02.042
Zangeneh, 2015, Photocatalytic oxidation of organic dyes and pollutants in wastewater using different modified titanium dioxides: a comparative review, J. Ind. Eng. Chem., 26, 1, 10.1016/j.jiec.2014.10.043
Asahi, 2014, Nitrogen-doped titanium dioxide as visible-light-sensitive photocatalyst: designs, developments, and prospects, Chem. Rev., 114, 9824, 10.1021/cr5000738
Zhang, 2010, Development of modified N doped TiO2 photocatalyst with metals, nonmetals and metal oxides, Energy Environ. Sci., 3, 715, 10.1039/b927575d
Schneider, 2014, Understanding TiO2 photocatalysis: mechanisms and materials, Chem. Rev., 114, 9919, 10.1021/cr5001892
Zangeneh, 2019, A novel L-Histidine (C, N) codoped-TiO2-CdS nanocomposite for efficient visible photo-degradation of recalcitrant compounds from wastewater, J. Hazard. Mater., 369, 384, 10.1016/j.jhazmat.2019.02.049
Lavand, 2015, Synthesis characterization, and investigation of visible light photocatalytic activity of C doped TiO2/CdS core-shell nanocomposite, Indian J. Mater. Sci., 10.1155/2015/690568
Karkooti, 2018, Development of advanced nanocomposite membranes using graphene nanoribbons and nanosheets for water treatment, J. Membr. Sci., 560, 97, 10.1016/j.memsci.2018.04.034
Roy Choudhury, 2018, High pressure ultrafiltration CuO/hydroxyethyl cellulose composite ceramic membrane for separation of Cr (VI) and Pb (II) from contaminated water, Chem. Eng. J., 336, 570, 10.1016/j.cej.2017.12.062
Rafiee, 2018, A new visible driven nanocomposite including Ti- substituted polyoxometalate/TiO2: Synthesis, characterization, photodegradation of azo dye process optimization by RSM and specific removal rate calculations, J. Mater. Sci.: Mater. Electron., 29, 20668
Jabbari, 2016, Enhanced charge carrier efficiency and solar light-induced photocatalytic activity of TiO2 nanoparticles through doping of silver nanoclusters and C–N–S nonmetals, J. Ind. Eng. Chem., 35, 132, 10.1016/j.jiec.2015.12.026
S.S. Lee, H. Bai, Z. Liu, D.D. Sun, Optimization and an insightful properties-activity study of electrospun TiO2/CuO composite nanofibers for efficient photocatalytic H2 generation, Appl. Catal. B., Environ. 140–141 (2013) 68– 81. Doi: 10.1016/ j.apcatb.2013.03.033.
Zhao, 2015, Efficient visible light photocatalytic activity of p-n junction CuO/TiO2 loaded on natural zeolite, RSC Adv., 5, 64495, 10.1039/C5RA07597A
R. Kumar, A. M. Isloor, A.F. Ismail, S.A. Rashid, A.A. Ahmed, Permeation, antifouling and desalination performance of TiO2 nanotube incorporated PSf/CS blend membranes, Desalination, 316 (2013) 76–84. https:// doi.org/10.1016/j.desal.2013.01.032.
Ghaemi, 2018, Surface Modification of polysulfone membranes using poly(acrylic acid)-decorated alumina nanoparticles, Chem. Eng. Technol., 41, 261, 10.1002/ceat.201700124
Safarpour, 2015, Effect of reduced graphene oxide/TiO2 nanocomposite with different molar ratios on the performance of PVDF ultrafiltration membranes, Sep. Purif. Technol., 140, 32, 10.1016/j.seppur.2014.11.010
Zeng, 2016, Novel polyvinylidene fluoride nanofiltration membrane blended with functionalized halloysite nanotubes for dye and heavy metal ions removal, J. Hazard. Mater., 317, 60, 10.1016/j.jhazmat.2016.05.049
Nor, 2016, Preparation and performance of PVDF-based nanocomposite membrane consisting of TiO2 nanofibers for organic pollutant decomposition in wastewater under UV irradiation, Desalination, 391, 89, 10.1016/j.desal.2016.01.015
Méricq, 2015, High performance PVDF-TiO2 membranes for water treatment, Chem. Eng. Sci., 123, 283, 10.1016/j.ces.2014.10.047
Jo, 2016, Antibacterial and hydrophilic characteristics of poly(ether sulfone) composite membranes containing zinc oxide nanoparticles grafted with hydrophilic polymers, Ind. Eng. Chem. Res., 55, 7801, 10.1021/acs.iecr.6b01510
Zhang, 2012, Biogenic silver nanoparticles (bio-Ag0) decrease biofouling of bio-Ag0/PES nanocomposite membranes, Water Res., 46, 2077, 10.1016/j.watres.2012.01.015
Rahimpour, 2008, Coupling TiO2 nanoparticles with UV irradiation for modification of polyethersulfone ultrafiltration membranes, J. Membr. Sci., 313, 158, 10.1016/j.memsci.2007.12.075
Rahimpour, 2012, Structural and performance properties of UV-assisted TiO2 deposited nanocomposite PVDF/SPES membranes, Desalination, 285, 31, 10.1016/j.desal.2011.09.026
Zhang, 2013, Synergetic effects of oxidized carbon nanotubes and graphene oxide on fouling control and anti-fouling mechanism of polyvinylidene fluoride ultrafiltration membranes, J. Membr. Sci., 448, 81, 10.1016/j.memsci.2013.07.064
Luo, 2005, Hydrophilic modification of poly (ether sulfone) ultrafiltration membrane surface by self-assembly of TiO2 nanoparticles, Appl. Surf. Sci., 249, 76, 10.1016/j.apsusc.2004.11.054
Razmjoua, 2011, Titania nanocomposite polyethersulfone ultrafiltration membranes fabricated using a low temperature hydrothermal coating process, J. Membr. Sci., 380, 98, 10.1016/j.memsci.2011.06.035
T. Zubkov, D. Stahl, T.L. Thompson, D. Panayotov, O. Diwald, J.T.J. Yates, Ultraviolet Light-Induced Hydrophilicity Effect on TiO2(110)(1_1). Dominant role of the photooxidation of adsorbed hydrocarbons causing wetting by water droplets, J. Phys. Chem. B., 109 (2005) 15454–15462. 10.1021/jp058101c.
Coskun, 2010, Treatment of olive mill wastewaters by nanofiltration and reverse osmosis membranes, Desalination, 259, 65, 10.1016/j.desal.2010.04.034
Mukherjee, 2016, Preparation of polysulfone titanium dioxide mixed matrix hollow fiber membrane and elimination of long term fouling by in situ photoexcitation during filtration of phenolic compounds, Chem. Eng. J., 302, 773, 10.1016/j.cej.2016.05.060
Koyuncu, 2004, Effect of cross flow velocity, feed concentration, and pressure on the salt rejection of nanofiltration membranes in reactive dye having two sodium salts and NaCl mixtures, Model Appl. J. Environ. Sci. Health., A., 39, 1055, 10.1081/ESE-120028413
Cui, 2013, Effect of cross-flow velocity on the critical flux of ceramic membrane filtration as a pre-treatment for seawater desalination, Chin. J. Chem. Eng., 21, 341, 10.1016/S1004-9541(13)60470-X
Elmaleh, 1996, Cross flow ultrafiltration of hydrocarbon and biological solid mixed suspensions, J. Membr. Sci., 118, 111, 10.1016/0376-7388(96)00090-7
Qu, 2009, Treatment of stable oil/water emulsion by novel felt-metal supported PVA composite hydrophilic membrane using cross flow ultrafiltration, T. Nonferr. Metal. Soc., 19, 773, 10.1016/S1003-6326(08)60348-9