Setting minimum head capsule abundance and taxa deletion criteria in chironomid-based inference models
Tóm tắt
Criteria for removing training set lakes and taxa in chironomid‐based inference models, due to low abundances, have largely been ad hoc. We used an anoxia inference model and a hypolimnetic oxygen model from south‐central Ontario to determine what effect subfossil head capsule abundance and taxa deletion criteria have on fossil inference statistics. Results from six training set lakes suggest that a minimum abundance of 40–50 head capsules is sufficient for use in inference models, however more diverse samples likely require more than 50 head capsules. Taxa deletion criteria substantially improved the predictive ability of inference models (lowered the root mean squared error of prediction (RMSEP)). The common practice of including taxa with only ≥ 2% abundance in at least two lakes was one of the deletion criteria that much improved inference models. Similar deletion criteria, such as ≥ 2% in at least 3 lakes and ≥ 3% in at least 1 lake, produced comparable improvements (up to 18% reduction in RMSEP).
Tài liệu tham khảo
Begon, M., J. L. Harper & C. R. Townsend, 1986. Ecology: Individuals, Populations and Communities. Blackwell Science, Oxford, UK, pp. 681–683.
Birks, H. J. B., 1994. The importance of pollen and diatom taxonomic precision in quantitative palaeoenvironmental reconstruction. Rev. Palaeobot. Palynol. 83: 107–117.
Birks, H. J. B., 1995. Quantitative palaeoenvironmental reconstructions. In Maddy, D. & J. S. Brew (eds), Statistical Modelling of Quaternary Science Data. Technical Guide 5, Quat. Res. Assoc., Cambridge, UK, pp. 161–254.
Brodersen, K. P. & C. Lindegaard, 1999. Classification, assessment and trophic reconstruction of Danish lakes using chironomids. Freshwat. Biol. 42: 143–157.
Brodersen, K. P. & C. Lindegaard, 1997. Significance of subfossile chironomid remains in classification of shallow lakes. Hydrobiologia 342/343: 125–132.
Brodin, Y. W. & M. Gransberg, 1993. Responses of insects, especially Chironomidae (Diptera), and mites to 130 years of acidification in a Scottish lake. Hydrobiologia 250: 201–212.
Brooks, S. J. & H. J. B. Birks, 2000. Chironomid–inferred late–glacial and early–Holocene mean July air temperatures for Kråkenes Lake, western Norway. J. Paleolim. 23: 77–89.
Brooks, S. J., J. J. Lowe & F. E. Mayle, 1997. The Late Devensian Lateglacial palaeoenvironmental record from Whitrig Bog, S.E. Scotland. 2. Chironomidae (Insecta: Diptera). Boreas 26: 297–308.
Bryce, D., 1962. Chironomidae (Diptera) from fresh water sediments, with special reference to Malham Tarn (Yorks.). Trans. Soc. Brit. Entomol. 10: 41–54.
Clerk, S., R. I. Hall, R. Quinlan & J. P. Smol, 2000. Quantitative inferences of past hypolimnetic anoxia and nutrient levels from a Canadian Precambrian Shield lake. J. Paleolim. 23: 319–336.
Gams, H., 1927. Die Geschicte der Lunzer Seen, Moore und Wälder. Int. Revue ges. Hydrobiol. Hydrogr. 18: 305–387.
Hall, R. I. & J. P. Smol, 1996. Paleolimnological assessment of longterm water–quality changes in south–central Ontario lakes affected by cottage development and acidification. Can. J. Fish. Aquat. Sci. 53: 1–17.
Hall, R. I., P. R. Leavitt, R. Quinlan, A. S. Dixit & J. P. Smol, 1999. Effects of agriculture, urbanization, and climate on water quality in the northern Great Plains. Limnol. Oceanogr. 44: 739–756.
Harmsworth, R. V., 1968. The developmental history of Blelham Tarn (England) as shown by animal microfossils, with special reference to the Cladocera. Ecol. Monogr. 38: 223–241.
Hill, M. O., 1973. Diversity and evenness: a unifying notation and its consequences. Ecology 54: 427–432.
Hofmann, W., 1993. Late–glacial/Holocene changes of the climatic and trophic conditions in three Eifel Maar lakes, as indicated by faunal remains. II. Chironomidae (Diptera). In Negendank, J. F. W. & B. Zolitschka (eds), Paleolimnology of European Maar Lakes, Lecture Notes in Earth Sciences, 49, pp. 421–433.
Johnson, M. G., J. R. M. Kelso, O. C. McNeil & W. B. Morton, 1990. Fossil midge associations and the historical status of fish in acidified lakes. J. Paleolim. 3: 113–127.
Kansanen, P. H., 1985. Assessment of pollution history from recent sediments in Lake Vanajavesi, southern Finland. II. Changes in the Chironomidae, Chaoboridae, and Ceratopogonidae (Diptera) fauna. Ann. Zool. Fenn. 22: 71–104.
Kingston, J. C., 1986. Diatom analysis – basic protocol. In Charles, D. F., D. R. Whitehead (eds), Paleoecological Investigation of Recent Lake Acidification: Methods and Project Description. Electric Power Research Institute Inc., Palo Alto, USA, EA–4906, Research Report 2174–10, pp. 6.1–6.11.
Levesque, A. J., L. C. Cwynar & I. R. Walker, 1994. A multi–proxy investigation of late–glacial climate and vegetation change at Pine Ridge Pond, southwest New Brunswick, Canada. Quat. Res. 42: 316–327.
Line, J. M., C. J. F. ter Braak & H. J. B. Birks, 1994. WACALIB version 3.3: a computer program to reconstruct environmental variables from fossil assemblages by weighted averaging and to derive sample–specific errors of prediction. J. Paleolim. 10: 147–152.
Little, J., 1999. Development and Application of a Chironomid–based Inference Model for Inferring Past Hypolimnetic Oxygen Conditions in southeastern Ontario Lakes. MSc. thesis, Queen's University, Kingston, Canada, 108 pp.
Little, J., R. I. Hall, R. Quinlan & J. P. Smol, 2000. Past trophic status and hypolimnetic anoxia during eutrophication and remediation of Gravenhurst Bay, Ontario: comparison of diatoms, chironomids, and historical records. Can. J. Fish. Aquat. Sci. 57: 333–341.
Lotter, A. F., H. J. B. Birks, W. Hofmann & A. Marchetto, 1997. Modern diatom, cladocera, chironomid and chrysophyte cyst assemblages as quantitative indicators for the reconstruction of past environmental conditions in the Alps. I. Climate. J. Paleolim. 18: 395–420.
Lotter, A. F., H. J. B. Birks, W. Hofmann & A. Marchetto, 1998. Modern diatom, cladocera, chironomid and chrysophyte cyst assemblages as quantitative indicators for the reconstruction of past environmental conditions in the Alps. II. Nutrients. J. Paleolim. 19: 443–463.
Lotter, A. F., I. R. Walker, S. J. Brooks & W. Hofmann, 1999. An intercontinental comparison of chironomid palaeotemperature inference models: Europe vs. North America. Quat. Sci. Rev. 18: 717–735.
Masaferro, J., A. Lami, P. Guilizzoni & F. Niessen, 1993. Record of changes in the fossil chironomids and other parameters in the volcanic Lake Nemi (central Italy). Verh. Internat. Verein. Limnol. 25: 1113–1116.
Meriläinen, J. J. & V. Hamina, 1993. Recent environmental history of a large, originally oligotrophic lake in Finland: a palaeolimnological study of chironomid remains. J. Paleolim. 9: 129–140.
Nürnberg, G. K., 1995. Quantifying anoxia in lakes. Limnol. Oceanogr. 40:1100–1111.
Olander, H., A. Korhola & T. Blom, 1997. Surface sediment Chironomidae (Insecta: Diptera) distributions along an ecotonal transect in subarctic Fennoscandia: developing a tool for palaeotemperature reconstructions. J. Paleolim. 18: 45–59.
Olander, H., H. J. B. Birks, A. Korhola & T. Blom, 1999. An expanded calibration model for inferring lakewater and air temperatures from fossil chironomid assemblages in northern Fennoscandia. Holocene 9: 279–294.
Palmer, S. L., 1998. Subfossil Chironomids (Insecta: Diptera) and Climatic Change at High Elevation Lakes in the Engelmann Spruce–Subalpine Fir Zone in southwestern British Columbia. M.Sc. thesis, Department of Zoology, University of British Columbia, Vancouver, Canada, 105 pp.
Pellatt, M. G., M. J. Smith, R. W. Mathewes & I. R. Walker, 1998. Palaeoecology of postglacial shifts in the northern Cascade Mountains, Canada. Palaeogeogr. Palaeoclimat. Palaeoecol. 141: 123–148.
Prat, N & M. V. Daroca, 1983. Eutrophication processes in Spanish reservoirs as revealed by biological records in profundal sediments. Hydrobiologia 103: 153–158.
Quinlan, R., 2000. Fossil Chironomids as indicators of water quality changes in south–central Ontario and Qu'Appelle Valley (Saskatchewan) lakes. Ph.D. thesis, Queen's University, Kingston, Canada, 258 pp.
Quinlan, R., J. P. Smol & R. I. Hall, 1998. Quantitative inferences of past hypolimnetic anoxia in south–central Ontario lakes using fossil midges (Diptera: Chironomidae). Can. J. Fish. Aquat. Sci. 55: 587–596.
Rück, A., I. R. Walker & R. Hebda, 1998. A palaeolimnological study of Tugulnuit Lake, British Columbia, Canada, with special emphasis on river influence as recorded by chironomids in the lake's sediment. J. Paleolim. 19: 63–75.
Sæther, O. A., 1979. Chironomid communities as water quality indicators. Holarct. Ecol. 2: 65–74.
Sayer, C., N. Roberts, J. Sadler, C. David & P. M. Wade, 1999. Biodiversity changes in a shallow lake ecosystem: a multiproxy palaeolimnological analysis. J. Biogeogr. 26: 97–114.
Shannon, C. E. & W. Weaver, 1949. The Mathematical Theory of Communication. University of Illinois Press, Urbana, USA, 117 pp.
Smith, M. J., M. G. Pellatt, I. R. Walker & R. W. Mathewes, 1998. Postglacial changes in chironomid communities and inferred climate near treeline at Mount Stoyoma, Cascade Mountains, southwestern British Columbia, Canada. J. Paleolim. 20: 277–293.
ter Braak, C. J. F. & P. Smilauer, 1998. CANOCO for Windows, version 4.0. Centre for Biometry Wageningen, CPRO–DLO, Wageningen, The Netherlands.
Uutala, A., 1986. Paleolimnological Assessment of the Effects of Lake Acidification on Chironomidae (Diptera) Assemblages in the Adirondack Region of New York. Ph.D. thesis, State University of New York, College of Environmental Science and Forestry, Syracuse, USA, 156 pp.
Verschuren, D., 1994. Sensitivity of tropical–African aquatic invertebrates to short–term trends in lake level and salinity: a paleolimnological test at Lake Oloidien, Kenya. J. Paleolim. 10: 253–263.
Walker, I. R, 1987. Chironomidae (Diptera) in paleoecology. Quat. Sci. Rev. 6: 29–40.
Walker, I. R. & G. M. MacDonald, 1995. Distributions of Chironomidae (Insecta: Diptera) and other freshwater midges with respect to treeline, Northwest Territories, Canada. Arctic Alp. Res. 27: 258–263.
Walker, I. R. & C. G. Paterson, 1983. Post–glacial chironomid succession in two small, humic lakes in the New Brunswick–Nova Scotia (Canada) border area. Freshwat. Invert. Biol. 2: 61–73.
Walker, I. R., S. E. Wilson & J. P. Smol, 1995. Chironomidae (Diptera): quantitative palaeosalinity indicators for lakes of western Canada. Can. J. Fish. Aquat. Sci. 52: 950–960.
Walker, I. R., E. D. Reavie, S. Palmer & R. N. Nordin, 1993. A palaeoenvironmental assessment of human impact on Wood Lake, Okanagan Valley, British Columbia, Canada. Quat. Internat. 20: 51–70.
Walker, I. R., J. P. Smol, D. R. Engstrom & H. J. B. Birks, 1991. An assessment of Chironomidae as quantitative indicators of past climatic change. Can. J. Fish. Aquat. Sci. 48: 975–987.
Warwick, W. F., 1980. Palaeolimnology of the Bay of Quinte, Lake Ontario: 2800 years of cultural influence. Can. Bull. Fish. Aquat. Sci. 206: 1–117.
Wiederholm, T. & L. Eriksson, 1979. Subfossil chironomids as evidence of eutrophication in Ekoln Bay, central Sweden. Hydrobiologia 62: 195–208.
Williams, N. E. & D. D. Williams, 1997. Palaeoecological reconstruction of natural and human influences on groundwater outflows. In P. J. Boon & D. L. Howell (eds), Freshwater Quality: Defining the Indefinable? Scottish Natural Heritage, Edinburgh, pp. 172–180.
Wilson, S. E., B. F. Cumming & J. P. Smol. 1996. Assessing the reliability of salinity inference models from diatom assemblages: an examination of a 219–lake data set from western North America. Can. J. Fish. Aquat. Sci. 53: 1580–1594.