Time-series maps of aboveground carbon stocks in the forests of central Sumatra

Springer Science and Business Media LLC - Tập 10 - Trang 1-13 - 2015
Rajesh Bahadur Thapa1, Takeshi Motohka1, Manabu Watanabe1, Masanobu Shimada1
1Earth Observation Research Center, Japan Aerospace Exploration Agency (JAXA), Tsukuba, Japan

Tóm tắt

Efforts to reduce emissions from deforestation and forest degradation in tropical Asia require accurate high-resolution mapping of forest carbon stocks and predictions of their likely future variation. Here we combine radar and LiDAR with field measurements to create a high-resolution aboveground forest carbon stock (AFCS) map and use spatial modeling to present probable future AFCS changes for the Riau province of central Sumatra. Our map provides spatially explicit estimates of the AFCS with an accuracy of ±23.5 Mg C ha−1. According to this map, the natural forests in the province currently store 265 million Mg C, with a density of 72 Mg C ha−1, as aboveground biomass. Using a spatially explicit modeling technique we derived time-series AFCS maps up to the year 2030 under three forest policy scenarios: business as usual, conservation, and concession. The spatial patterns of AFCS and their trends under different scenarios vary on a local scale, and some areas are highlighted that are at eminent risk of carbon emission. Based on the business as usual scenario, the current AFCS could decrease by 75 %, which may lead to the release of 747 million Mg CO2. The other two scenarios, conservation and concession, suggest the risk reductions by 11 and 59 %, respectively. The time-series AFCS maps provide spatially explicit scenarios of changes in AFCS. These data may aid in planning Reducing Emissions from Deforestation and forest Degradation in developing countries projects in the study area, and stimulate the development of AFCS maps for other regions of tropical Asia.

Tài liệu tham khảo

Shimada M, Itoh T, Motohka T, Watanabe M, Shiraishi T, Thapa R, Lucas R. New global forest/non-forest maps from ALOS PALSAR data (2007–2010). Remote Sens Environ. 2014;155:13–31. FAO. Forest resource assessment 2010. Rome: Food and Agricultural Organization of the United Nations; 2012. Aguilar-Amuchastegui N, Riveros JC, Forrest JL. Identifying areas of deforestation risk for REDD+ using a species modeling tool. Carbon Bal Manag. 2014;9:10. Canadell JG, Schulze ED. Global potential of biospheric carbon management for climate mitigation. Nat Commun. 2014;5:5282. Grace J, Mitchard E, Gloor E. Perturbations in the carbon budget of the tropics. Glob Change Biol. 2014;20:3238–55. Harris NL, Brown S, Hagen SC, Saatchi SS, Petrova S, Salas W, Hansen MC, Potapov PV, Lotsch A. Baseline map of carbon emissions from deforestation in tropical regions. Science. 2012;336:1573–6. Strassburg B, Turner KR, Fisher B, Schaeffer R, Lovtt A. Reducing emissions from deforestation—The combined incentives mechanism and empirical simulations. Glob Environ Chang. 2009;19:265–78. http://www.un-redd.org. Accessed 29 Sept 2014. Carlson KM, Curran LM, Ratnasari D, Pittman AM, et al. Committed carbon emissions, deforestation, and community land conversion from oil palm plantation expansion in West Kalimantan, Indonesia. Proc Natl Acad Sci USA. 2012;109:7559–64. Cutler M, Boyd D, Foody G, Vetrivel A. Estimating tropical forest biomass with a combination of SAR image texture and Landsat TM data: an assessment of predictions between regions. ISPRS J Photogram. 2012;70:66–77. Leach M, Scoones I. Carbon forestry in West Africa: the politics of models, measures and verification processes. Glob Environ Chang. 2013;23:957–67. Morel AC, Fisher JB, Malhi Y. Evaluating the potential to monitor aboveground biomass in forest and oil palm in Sabah, Malaysia, for 2000–2008 with Landsat ETM+ and ALOS-PALSAR. Int J Remote Sens. 2012;33:3614–39. Thapa RB, Watanabe M, Motohka T, Shiraishi T, Shimada M. Calibration of aboveground forest carbon stock models for major tropical forests in central Sumatra using airborne LiDAR and field measurement data. IEEE J Sel Top Appl. 2015;8:661–73. Asner GP, Knapp DE, Martin RE, Tupayachi R, Anderson CB, Mascaro J, Sinca F, Chadwick KD, Higgins M, Farfan W, Llactayo W, Silman MR. Targeted carbon conservation at national scales with high-resolution monitoring. Proc Natl Acad Sci USA. 2014;111:E5016–22. Lin L, Sills E, Cheshire H. Targeting areas for reducing emissions from deforestation and forest degradation (REDD+) projects in Tanzania. Glob Environ Chang. 2014;24:277–86. Thapa RB, Shimada M, Watanabe M, Motohka T, Shiraishi T. The tropical forest in South East Asia: monitoring and scenario modeling using Synthetic Aperture Radar data. Appl Geogr. 2013;41:168–78. Asner GP, Powell GVN, Mascaro J, Knapp DE, Clark JK, Jacobson J, Kennedy-Bowdoin T, Balaji A, Paez-Acosta G, Victoria E, Secada L, Valqui M, Hughes RF. High-resolution forest carbon stocks and emissions in the Amazon. Proc Natl Acad Sci USA. 2010;107:16738–42. Tsui OW, Coops NC, Wulder MA, Marshall PL. Integrating airborne LiDAR and space-borne radar via multivariate kriging to estimate above-ground biomass. Remote Sens Environ. 2013;139:340–52. Mitchard ETA, Saatchi SS, Baccini A, Asner GP, Goetz SJ, Harris NL, Brown S. Uncertainty in the spatial distribution of tropical forest biomass: a comparison of pan-tropical maps. Carbon Bal Manag. 2013;8:10. Thapa RB, Itoh T, Shimada M, Watanabe M, Motohka T, Shiraishi T. Evaluation of ALOS PALSAR sensitivity for characterizing natural forest cover in wider tropical areas. Remote Sens Environ. 2014;155:32–41. Shimada M, Ohtaki T. Generating large-scale high-quality SAR mosaic datasets: application to PALSAR data for global monitoring. IEEE J Sel Top Appl. 2010;3:637–56. Motohka T, Shimada M, Uryu Y, Setiabudi B. Using time series PALSAR gamma nought mosaics for automatic detection of tropical deforestation: a test study in Riau, Indonesia. Remote Sens Environ. 2014;155:79–88. Saatchi S, Marlier M, Chazdon RL, Clark DB, Russell AE. Impact of spatial variability of tropical forest structure on radar estimation of aboveground biomass. Remote Sens Environ. 2011;115:2836–49. Thapa RB, Watanabe M, Motohka T, Shimada M. Potential of high-resolution ALOS-PALSAR mosaic texture for aboveground forest carbon tracking in tropical region. Remote Sens Environ. 2015;160:122–33. Dobson MC, Ulaby FT, Le Toan T, Beaudoin A, Kasischke ES, Christensen NC. Dependence of radar backscatter on conifer forest biomass. IEEE Trans Geosci Remote. 1992;30:412–5. Lucas R, Armston J, Fairfax R, Fensham R, Accad A, Carreiras J, Kelley J, Bunting P, Clewley D, Bray S, Metcalfe D, Dwyer J, Bowen M, Eyre T, Laidlaw M, Shimada M. An evaluation of the ALOS PALSAR L-band backscatter—above ground biomass relationship Queensland, Australia: impact of surface moisture condition and vegetation structure. IEEE J Sel Top Appl. 2010;3:576–93. Englhart S, Keuck V, Siegert F. Aboveground biomass retrieval in tropical forests—the potential of combined X- and L-band SAR data use. Remote Sens Environ. 2011;115:1260–71. Luckman AJ, Baker JR, Honzák MH, Lucas RM. Tropical forest biomass density estimation using JERS-1 SAR: seasonal variation, confidence limits and application to image mosaics. Remote Sens Environ. 1998;62:126–39. Watanabe M, Motohka T, Shiraishi T, Thapa RB, Kawano N, Shimada M. Dependency of forest biomass on full polarimetric parameters obtained from L-band SAR data for a natural forest in Indonesia. In: Proc Intl Geosci Remote Sens Symp 2013, 3919–3922. MofF. IFCA consolidation report: reducing emissions from deforestation and forest degradation in Indonesia. Forestry Research and Development Agency, Jakarta, Indonesia; 2008. BPS. Hasil Sensus Pnduduk 2010: data Agregat per Provinsi (in Indonesian language); 2010. Web: http://dds.bps.go.id/eng/download_file/SP2010_agregat_data_perProvinsi.pdf. Accessed 2012.3.7. Cairns MA, Brown S, Helmer EH, Baumgardner GA. Root biomass allocation in the world’s upland forests. Oecologia. 1997;111:1–11. Pearson T, Walker S, Brown S. Sourcebook for land use, land-use change and forestry projects. Little Rock: Biocarbon Fund, Winrock International; 2005. http://www.eorc.jaxa.jp/ALOS/en/dataset/dataset_index.htm. Accessed in 2015.6.30. Shiraishi T, Motohka T, Thapa RB, Watanabe M, Shimada M. Comparative assessment of supervised classifiers for land use land cover classification in a tropical region using time-series PALSAR mosaic data. IEEE J Sel Top Appl. 2014;7:1186–99. Murdiyarso D, Rosalina U, Hairiah K, Muslihat L, Suryadiputra INN, Jaya A. Petunjuk Lapangan: Pendugaan Cadangan Karbon pada Lahan Gambut. Proyek Climate Change, Forests and Peatlands in Indonesia. Wetlands International, Indonesia Programme and Wildlife Habitat Canada. Bogor, Indonesia; 2004. Brown S. Estimating biomass and biomass change of tropical forests: a primer. UN FAO Forestry Paper, no. 134; 1997. p 55. Komiyama A, Poungparn S, Kato S. Common allometric equations for estimating the tree weight of mangroves. J Trop Ecol. 2005;21:471–7. Adiriono T. Measurement of carbon stock with carbonization method in forest plantation of acacia crassicarpa: a case study in PT Sebangun Bumi Andalas Wood Based Industries. MSc Thesis, Faculty of Forestry, Gadjah Mada University; 2009. Schroth G, Angelo SAD, Teixeira WG, Haag D, Lieberei R. Conversion of secondary forest to agroforestry and monoculture plantations in Amazonia: consequences for biomass, litter and soil carbon stock after 7 years. For Ecol Manag. 2002;163:131–50. Frangi JL, Lugo AE. Ecosystem dynamics of a subtropical floodplain forest. Ecol Monogr. 1985;55:351–69. Yulianti N. Carbon stock of peatland in oil palm agroecosystem of PTPN IV Ajamu, Labuhan Batu, North Sumatra. MSc Thesis, Faculty of Agriculture, Bogor Agricultural University (IPB), Bogor; 2009. Walker SM, Pearson TRH, Casarim FM, Harris N, Petrova S, Grais A, Swails E, Netzer M, Goslee KM, Brown S. Standard operating procedures for terrestrial carbon measurement. Little Rock: Winrock International; 2012. Pearson T, Walker S, Brown S. Sourcebook for land use, land-use change and forestry (LULUCF) projects. Little Rock: BioCarbon Fund and Winrock International; 2005. van Noordwijk M, Rahayu S, Hairiah K, Wulan YC, Farida A, Verbist B. Carbon stock assessment for a forest-to-coffee conversion landscape in Sumber-Jaya (Lampung, Indonesia): from allometric equations to land use change analysis. Sci China (Ser C). 2002;10:75–86. IPCC. Agriculture, forestry and other land use. Guidelines for National Greenhouse Gas Inventories, 4; 2006. http://www.ipcc-nggip.iges.or.jp/public/2006gl/vol4.html. Accessed 2 Feb 2012. Richards JA, Jia X. Remote sensing digital image analysis. Berlin: Springer; 2006. Willmott CJ, Wicks DE. An empirical method for the spatial interpolation of monthly precipitation within California. Phys Geogr. 1980;1:59–73.