Human cytosolic glutathione transferases: structure, function, and drug discovery

Trends in Pharmacological Sciences - Tập 33 - Trang 656-668 - 2012
Baojian Wu1, Dong Dong2
1Division of Pharmaceutics, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou, Guangdong 510632, China
2Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, 1441 Moursund Street, Houston, TX 77030, USA

Tài liệu tham khảo

Hayes, 2005, Glutathione transferases, Annu. Rev. Pharmacol. Toxicol., 45, 51, 10.1146/annurev.pharmtox.45.120403.095857 Oakley, 2011, Glutathione transferases: a structural perspective, Drug Metab. Rev., 43, 138, 10.3109/03602532.2011.558093 Sheehan, 2001, Structure, function and evolution of glutathione transferases: implications for classification of non-mammalian members of an ancient enzyme superfamily, Biochem. J., 360, 1, 10.1042/0264-6021:3600001 Mannervik, 2005, Nomenclature for mammalian soluble glutathione transferases, Methods Enzymol., 401, 1, 10.1016/S0076-6879(05)01001-3 Reinemer, 1992, Three-dimensional structure of class pi glutathione S-transferase from human placenta in complex with S-hexylglutathione at 2.8Å resolution, J. Mol. Biol., 227, 214, 10.1016/0022-2836(92)90692-D Dong, 2012, Substrate selectivity of drug-metabolizing cytochrome P450s predicted from crystal structures and in silico modeling, Drug Metab. Rev., 44, 192, 10.3109/03602532.2011.645580 Dong, 2012, Understanding substrate selectivity of human UDP-glucuronosyltransferases through QSAR modeling and analysis of homologous enzymes, Xenobiotica, 42, 808, 10.3109/00498254.2012.663515 Dong, 2012, Crystal structures of human sulfotransferases: insights into the mechanisms of action and substrate selectivity, Expert Opin. Drug Metab. Toxicol., 8, 635, 10.1517/17425255.2012.677027 Armstrong, 2010, Glutathione transferases, pp295 Polekhina, 2001, Crystal structure of maleylacetoacetate isomerase/glutathione transferase zeta reveals the molecular basis for its remarkable catalytic promiscuity, Biochemistry, 40, 1567, 10.1021/bi002249z Sinning, 1993, Structure determination and refinement of human alpha class glutathione transferase A1-1, and a comparison with the mu and pi class enzymes, J. Mol. Biol., 232, 192, 10.1006/jmbi.1993.1376 Abdalla, 2002, Design of a monomeric human glutathione transferase GSTP1, a structurally stable but catalytically inactive protein, Protein Eng., 15, 827, 10.1093/protein/15.10.827 Rossjohn, 1998, Human theta class glutathione transferase: the crystal structure reveals a sulfate-binding pocket within a buried active site, Structure, 6, 309, 10.1016/S0969-2126(98)00034-3 Le Trong, 2002, 1.3-Å resolution structure of human glutathione S-transferase with S-hexyl glutathione bound reveals possible extended ligandin binding site, Proteins, 48, 618, 10.1002/prot.10162 Hou, 2007, Functional promiscuity correlates with conformational heterogeneity in A-class glutathione S-transferases, J. Biol. Chem., 282, 23264, 10.1074/jbc.M700868200 Zhou, 2012, Structural insights into the dehydroascorbate reductase activity of human omega-class glutathione transferases, J. Mol. Biol., 420, 190, 10.1016/j.jmb.2012.04.014 Carini, 2004, Mass spectrometry for detection of 4-hydroxy-trans-2-nonenal (HNE) adducts with peptides and proteins, Mass Spectrom. Rev., 23, 281, 10.1002/mas.10076 Hubatsch, 1998, Human glutathione transferase A4-4: an alpha class enzyme with high catalytic efficiency in the conjugation of 4-hydroxynonenal and other genotoxic products of lipid peroxidation, Biochem. J., 330, 175, 10.1042/bj3300175 Balogh, 2010, Substrate specificity combined with stereopromiscuity in glutathione transferase A4-4-dependent metabolism of 4-hydroxynonenal, Biochemistry, 49, 1541, 10.1021/bi902038u Comstock, 1994, A comparison of the enzymatic and physicochemical properties of human glutathione transferase M4-4 and three other human mu class enzymes, Arch. Biochem. Biophys., 311, 487, 10.1006/abbi.1994.1266 Patskovsky, 1999, Functions of His107 in the catalytic mechanism of human glutathione S-transferase hGSTM1a-1a, Biochemistry, 38, 1193, 10.1021/bi982164m Patskovsky, 2006, Transition state model and mechanism of nucleophilic aromatic substitution reactions catalyzed by human glutathione S-transferase M1a-1a, Biochemistry, 45, 3852, 10.1021/bi051823+ Oakley, 1997, The three-dimensional structure of the human pi class glutathione transferase P1-1 in complex with the inhibitor ethacrynic acid and its glutathione conjugate, Biochemistry, 36, 576, 10.1021/bi962316i Hu, 1997, Active site architecture of polymorphic forms of human glutathione S-transferase P1-1 accounts for their enantioselectivity and disparate activity in the glutathione conjugation of 7β,8α-dihydroxy-9α,10α-oxy-7,8,9,10-tetrahydrobenzo(a)pyrene, Biochem. Biophys. Res. Commun., 235, 424, 10.1006/bbrc.1997.6777 Ji, 1999, Structure and function of residue 104 and water molecules in the xenobiotic substrate-binding site in human glutathione S-transferase P1-1, Biochemistry, 38, 10231, 10.1021/bi990668u Tars, 2010, Structural basis for featuring of steroid isomerase activity in alpha class glutathione transferases, J. Mol. Biol., 397, 332, 10.1016/j.jmb.2010.01.023 Johansson, 2002, Active-site residues governing high steroid isomerase activity in human glutathione transferase A3-3, J. Biol. Chem., 277, 16648, 10.1074/jbc.M201062200 Gu, 2004, Crystal structure of human glutathione S-transferase A3-3 and mechanistic implications for its high steroid isomerase activity, Biochemistry, 43, 15673, 10.1021/bi048757g Pettersson, 2002, Transmutation of human glutathione transferase A2-2 with peroxidase activity into an efficient steroid isomerase, J. Biol. Chem., 277, 30019, 10.1074/jbc.M204485200 Hiratsuka, 1990, A new class of rat glutathione S-transferase Yrs-Yrs inactivating reactive sulfate esters as metabolites of carcinogenic arylmethanols, J. Biol. Chem., 265, 11973, 10.1016/S0021-9258(19)38496-0 Hussey, 1992, Characterization of a human class-theta glutathione S-transferase with activity towards 1-menaphthyl sulphate, Biochem. J., 286, 929, 10.1042/bj2860929 Shokeer, 2005, Residue 234 in glutathione transferase T1-1 plays a pivotal role in the catalytic activity and the selectivity against alternative substrates, Biochem. J., 388, 387, 10.1042/BJ20042064 Tars, 2006, Structural basis of the suppressed catalytic activity of wild-type human glutathione transferase T1-1 compared to its W234R mutant, J. Mol. Biol., 355, 96, 10.1016/j.jmb.2005.10.049 Fernández-Cañón, 1998, Characterization of a fungal maleylacetoacetate isomerase gene and identification of its human homologue, J. Biol. Chem., 273, 329, 10.1074/jbc.273.1.329 Stacpoole, 1998, Clinical pharmacology and toxicology of dichloroacetate, Environ. Health Perspect., 106, 989, 10.1289/ehp.98106s4989 Tong, 1998, Glutathione transferase zeta-catalyzed biotransformation of dichloroacetic acid and other alpha-haloacids, Chem. Res. Toxicol., 11, 1332, 10.1021/tx980144f Board, 2000, Identification, characterization, and crystal structure of the omega class glutathione transferases, J. Biol. Chem., 275, 24798, 10.1074/jbc.M001706200 Whitbread, 2003, Characterization of the human omega class glutathione transferase genes and associated polymorphisms, Pharmacogenetics, 13, 131, 10.1097/00008571-200303000-00003 Board, 2008, S-(4-Nitrophenacyl)glutathione is a specific substrate for glutathione transferase omega 1-1, Anal. Biochem., 374, 25, 10.1016/j.ab.2007.09.029 Matsuoka, 2000, Prostaglandin D2 as a mediator of allergic asthma, Science, 287, 2013, 10.1126/science.287.5460.2013 Inoue, 2003, Mechanism of metal activation of human hematopoietic prostaglandin D synthase, Nat. Struct. Biol., 10, 291, 10.1038/nsb907 Kanaoka, 1997, Cloning and crystal structure of hematopoietic prostaglandin D synthase, Cell, 90, 1085, 10.1016/S0092-8674(00)80374-8 Habig, 1974, The identity of glutathione S-transferase B with ligandin, a major binding protein of liver, Proc. Natl. Acad. Sci. U.S.A., 71, 3879, 10.1073/pnas.71.10.3879 Vargo, 2001, Affinity labeling of rat glutathione S-transferase isozyme 1-1 by 17β-iodoacetoxy-estradiol-3-sulfate, J. Biol. Chem., 276, 2031, 10.1074/jbc.M008212200 O'Sullivan, 2006, Chemical modification at subunit 1 of rat kidney alpha class glutathione transferase with 2,3,5,6-tetrachloro-1,4-benzoquinone: close structural connectivity between glutathione conjugation activity and non-substrate ligand binding, Biochem. Pharmacol., 71, 1629, 10.1016/j.bcp.2006.03.002 Meijerman, 2008, Combined action and regulation of phase II enzymes and multidrug resistance proteins in multidrug resistance in cancer, Cancer Treat. Rev., 34, 505, 10.1016/j.ctrv.2008.03.002 Adler, 1999, Regulation of JNK signaling by GSTp, EMBO J., 18, 1321, 10.1093/emboj/18.5.1321 Asakura, 2007, Conformational change in the active center region of GST P1-1, due to binding of a synthetic conjugate of DXR with GSH, enhanced JNK-mediated apoptosis, Apoptosis, 12, 1269, 10.1007/s10495-007-0053-0 Lyttle, 1994, Isozyme-specific glutathione-S-transferase inhibitors: design and synthesis, J. Med. Chem., 37, 189, 10.1021/jm00027a024 Oakley, 1997, The structures of human glutathione transferase P1-1 in complex with glutathione and various inhibitors at high resolution, J. Mol. Biol., 274, 84, 10.1006/jmbi.1997.1364 Ricci, 2005, 7-Nitro-2,1,3-benzoxadiazole derivatives, a new class of suicide inhibitors for glutathione S-transferases. Mechanism of action of potential anticancer drugs, J. Biol. Chem., 280, 26397, 10.1074/jbc.M503295200 Federici, 2009, Structural basis for the binding of the anticancer compound 6-(7-nitro-2,1,3-benzoxadiazol-4-ylthio)hexanol to human glutathione S-transferases, Cancer Res., 69, 8025, 10.1158/0008-5472.CAN-09-1314 Weber, 2010, Identification and characterisation of new inhibitors for the human hematopoietic prostaglandin D2 synthase, Eur. J. Med. Chem., 45, 447, 10.1016/j.ejmech.2009.10.025 Gouet, 2002, ENDscript: a workflow to display sequence and structure information, Bioinformatics, 18, 767, 10.1093/bioinformatics/18.5.767 Balchin, 2010, Stability of the domain interface contributes towards the catalytic function at the H-site of class alpha glutathione transferase A1-1, Biochim. Biophys. Acta, 1804, 2228, 10.1016/j.bbapap.2010.09.003 Gildenhuys, 2010, Arginine 15 stabilizes an SNAr reaction transition state and the binding of anionic ligands at the active site of human glutathione transferase A1-1, Biophys. Chem., 146, 118, 10.1016/j.bpc.2009.11.003 Achilonu, 2010, The role of a topologically conserved isoleucine in glutathione transferase structure, stability and function, Acta Crystallogr. Sect. F: Struct. Biol. Cryst. Commun., 66, 776, 10.1107/S1744309110019135 Balogh, 2009, Structural analysis of a glutathione transferase A1-1 mutant tailored for high catalytic efficiency with toxic alkenals, Biochemistry, 48, 7698, 10.1021/bi900895b Grahn, 2006, New crystal structures of human glutathione transferase A1-1 shed light on glutathione binding and the conformation of the C-terminal helix, Acta Crystallogr. D: Biol. Crystallogr., 62, 197, 10.1107/S0907444905039296 Kuhnert, 2005, Tertiary interactions stabilise the C-terminal region of human glutathione transferase A1-1: a crystallographic and calorimetric study, J. Mol. Biol., 349, 825, 10.1016/j.jmb.2005.04.025 Cameron, 1995, Structural analysis of human alpha-class glutathione transferase A1-1 in the apo-form and in complexes with ethacrynic acid and its glutathione conjugate, Structure, 3, 717, 10.1016/S0969-2126(01)00206-4 Zhang, 2012, Structure-based redesign of GST A2-2 for enhanced catalytic efficiency with azathioprine, Chem. Biol., 19, 414, 10.1016/j.chembiol.2012.01.021 Bruns, 1999, Human glutathione transferase A4-4 crystal structures and mutagenesis reveal the basis of high catalytic efficiency with toxic lipid peroxidation products, J. Mol. Biol., 288, 427, 10.1006/jmbi.1999.2697 Patskovsky, 2000, The enhanced affinity for thiolate anion and activation of enzyme-bound glutathione is governed by an arginine residue of human mu class glutathione S-transferases, J. Biol. Chem., 275, 3296, 10.1074/jbc.275.5.3296 Norrgård, 2006, Alternative mutations of a positively selected residue elicit gain or loss of functionalities in enzyme evolution, Proc. Natl. Acad. Sci. U.S.A., 103, 4876, 10.1073/pnas.0600849103 Raghunathan, 1994, Crystal structure of human class mu glutathione transferase GSTM2-2. Effects of lattice packing on conformational heterogeneity, J. Mol. Biol., 238, 815, 10.1006/jmbi.1994.1336 Patskovsky, 1999, An asparagine–phenylalanine substitution accounts for catalytic differences between hGSTM3-3 and other human class mu glutathione S-transferases, Biochemistry, 38, 16187, 10.1021/bi991714t Quesada-Soriano, 2011, Diuretic drug binding to human glutathione transferase P1-1: potential role of Cys-101 revealed in the double mutant C47S/Y108V, J. Mol. Recognit., 24, 220, 10.1002/jmr.1040 Quesada-Soriano, 2009, Influence of the H-site residue 108 on human glutathione transferase P1-1 ligand binding: structure–thermodynamic relationships and thermal stability, Protein Sci., 18, 2454, 10.1002/pro.253 Ang, 2009, Rational design of an organometallic glutathione transferase inhibitor, Angew. Chem. Int. Ed. Engl., 48, 3854, 10.1002/anie.200900185 Parker, 2008, The anti-cancer drug chlorambucil as a substrate for the human polymorphic enzyme glutathione transferase P1-1: kinetic properties and crystallographic characterisation of allelic variants, J. Mol. Biol., 380, 131, 10.1016/j.jmb.2008.04.066 Hegazy, 2008, Modulating catalytic activity by unnatural amino acid residues in a GSH-binding loop of GST P1-1, J. Mol. Biol., 376, 811, 10.1016/j.jmb.2007.12.013 Téllez-Sanz, 2006, Calorimetric and structural studies of the nitric oxide carrier S-nitrosoglutathione bound to human glutathione transferase P1-1, Protein Sci., 15, 1093, 10.1110/ps.052055206 Cesareo, 2005, Nitrosylation of human glutathione transferase P1-1 with dinitrosyl diglutathionyl iron complex in vitro and in vivo, J. Biol. Chem., 280, 42172, 10.1074/jbc.M507916200 Kong, 2003, Contribution of glycine 146 to a conserved folding module affecting stability and refolding of human glutathione transferase P1-1, J. Biol. Chem., 278, 1291, 10.1074/jbc.M209581200 Rossjohn, 2000, Structures of thermolabile mutants of human glutathione transferase P1-1, J. Mol. Biol., 302, 295, 10.1006/jmbi.2000.4054 Ortiz-Salmerón, 2003, Thermodynamic description of the effect of the mutation Y49F on human glutathione transferase P1-1 in binding with glutathione and the inhibitor S-hexylglutathione, J. Biol. Chem., 278, 46938, 10.1074/jbc.M305043200 Oakley, 1999, The ligandin (non-substrate) binding site of human Pi class glutathione transferase is located in the electrophile binding site (H-site), J. Mol. Biol., 291, 913, 10.1006/jmbi.1999.3029 Oakley, 1997, The glutathione conjugate of ethacrynic acid can bind to human pi class glutathione transferase P1-1 in two different modes, FEBS Lett., 419, 32, 10.1016/S0014-5793(97)01424-5 Oakley, 1998, Evidence for an induced-fit mechanism operating in pi class glutathione transferases, Biochemistry, 37, 9912, 10.1021/bi980323w Prade, 1997, Structures of class pi glutathione S-transferase from human placenta in complex with substrate, transition-state analogue and inhibitor, Structure, 5, 1287, 10.1016/S0969-2126(97)00281-5 Ji, 1997, Structure and function of the xenobiotic substrate-binding site and location of a potential non-substrate-binding site in a class pi glutathione S-transferase, Biochemistry, 36, 9690, 10.1021/bi970805s Zhou, 2011, Novel folding and stability defects cause a deficiency of human glutathione transferase omega 1, J. Biol. Chem., 286, 4271, 10.1074/jbc.M110.197822 Trujillo, 2012, Investigation of the binding pocket of human hematopoietic prostaglandin (PG) D2 synthase (hH-PGDS): a tale of two waters, Bioorg. Med. Chem. Lett., 22, 3795, 10.1016/j.bmcl.2012.04.004 Kado, 2012, Human hematopoietic prostaglandin D synthase inhibitor complex structures, J. Biochem., 151, 447, 10.1093/jb/mvs024