Human cytosolic glutathione transferases: structure, function, and drug discovery
Tài liệu tham khảo
Hayes, 2005, Glutathione transferases, Annu. Rev. Pharmacol. Toxicol., 45, 51, 10.1146/annurev.pharmtox.45.120403.095857
Oakley, 2011, Glutathione transferases: a structural perspective, Drug Metab. Rev., 43, 138, 10.3109/03602532.2011.558093
Sheehan, 2001, Structure, function and evolution of glutathione transferases: implications for classification of non-mammalian members of an ancient enzyme superfamily, Biochem. J., 360, 1, 10.1042/0264-6021:3600001
Mannervik, 2005, Nomenclature for mammalian soluble glutathione transferases, Methods Enzymol., 401, 1, 10.1016/S0076-6879(05)01001-3
Reinemer, 1992, Three-dimensional structure of class pi glutathione S-transferase from human placenta in complex with S-hexylglutathione at 2.8Å resolution, J. Mol. Biol., 227, 214, 10.1016/0022-2836(92)90692-D
Dong, 2012, Substrate selectivity of drug-metabolizing cytochrome P450s predicted from crystal structures and in silico modeling, Drug Metab. Rev., 44, 192, 10.3109/03602532.2011.645580
Dong, 2012, Understanding substrate selectivity of human UDP-glucuronosyltransferases through QSAR modeling and analysis of homologous enzymes, Xenobiotica, 42, 808, 10.3109/00498254.2012.663515
Dong, 2012, Crystal structures of human sulfotransferases: insights into the mechanisms of action and substrate selectivity, Expert Opin. Drug Metab. Toxicol., 8, 635, 10.1517/17425255.2012.677027
Armstrong, 2010, Glutathione transferases, pp295
Polekhina, 2001, Crystal structure of maleylacetoacetate isomerase/glutathione transferase zeta reveals the molecular basis for its remarkable catalytic promiscuity, Biochemistry, 40, 1567, 10.1021/bi002249z
Sinning, 1993, Structure determination and refinement of human alpha class glutathione transferase A1-1, and a comparison with the mu and pi class enzymes, J. Mol. Biol., 232, 192, 10.1006/jmbi.1993.1376
Abdalla, 2002, Design of a monomeric human glutathione transferase GSTP1, a structurally stable but catalytically inactive protein, Protein Eng., 15, 827, 10.1093/protein/15.10.827
Rossjohn, 1998, Human theta class glutathione transferase: the crystal structure reveals a sulfate-binding pocket within a buried active site, Structure, 6, 309, 10.1016/S0969-2126(98)00034-3
Le Trong, 2002, 1.3-Å resolution structure of human glutathione S-transferase with S-hexyl glutathione bound reveals possible extended ligandin binding site, Proteins, 48, 618, 10.1002/prot.10162
Hou, 2007, Functional promiscuity correlates with conformational heterogeneity in A-class glutathione S-transferases, J. Biol. Chem., 282, 23264, 10.1074/jbc.M700868200
Zhou, 2012, Structural insights into the dehydroascorbate reductase activity of human omega-class glutathione transferases, J. Mol. Biol., 420, 190, 10.1016/j.jmb.2012.04.014
Carini, 2004, Mass spectrometry for detection of 4-hydroxy-trans-2-nonenal (HNE) adducts with peptides and proteins, Mass Spectrom. Rev., 23, 281, 10.1002/mas.10076
Hubatsch, 1998, Human glutathione transferase A4-4: an alpha class enzyme with high catalytic efficiency in the conjugation of 4-hydroxynonenal and other genotoxic products of lipid peroxidation, Biochem. J., 330, 175, 10.1042/bj3300175
Balogh, 2010, Substrate specificity combined with stereopromiscuity in glutathione transferase A4-4-dependent metabolism of 4-hydroxynonenal, Biochemistry, 49, 1541, 10.1021/bi902038u
Comstock, 1994, A comparison of the enzymatic and physicochemical properties of human glutathione transferase M4-4 and three other human mu class enzymes, Arch. Biochem. Biophys., 311, 487, 10.1006/abbi.1994.1266
Patskovsky, 1999, Functions of His107 in the catalytic mechanism of human glutathione S-transferase hGSTM1a-1a, Biochemistry, 38, 1193, 10.1021/bi982164m
Patskovsky, 2006, Transition state model and mechanism of nucleophilic aromatic substitution reactions catalyzed by human glutathione S-transferase M1a-1a, Biochemistry, 45, 3852, 10.1021/bi051823+
Oakley, 1997, The three-dimensional structure of the human pi class glutathione transferase P1-1 in complex with the inhibitor ethacrynic acid and its glutathione conjugate, Biochemistry, 36, 576, 10.1021/bi962316i
Hu, 1997, Active site architecture of polymorphic forms of human glutathione S-transferase P1-1 accounts for their enantioselectivity and disparate activity in the glutathione conjugation of 7β,8α-dihydroxy-9α,10α-oxy-7,8,9,10-tetrahydrobenzo(a)pyrene, Biochem. Biophys. Res. Commun., 235, 424, 10.1006/bbrc.1997.6777
Ji, 1999, Structure and function of residue 104 and water molecules in the xenobiotic substrate-binding site in human glutathione S-transferase P1-1, Biochemistry, 38, 10231, 10.1021/bi990668u
Tars, 2010, Structural basis for featuring of steroid isomerase activity in alpha class glutathione transferases, J. Mol. Biol., 397, 332, 10.1016/j.jmb.2010.01.023
Johansson, 2002, Active-site residues governing high steroid isomerase activity in human glutathione transferase A3-3, J. Biol. Chem., 277, 16648, 10.1074/jbc.M201062200
Gu, 2004, Crystal structure of human glutathione S-transferase A3-3 and mechanistic implications for its high steroid isomerase activity, Biochemistry, 43, 15673, 10.1021/bi048757g
Pettersson, 2002, Transmutation of human glutathione transferase A2-2 with peroxidase activity into an efficient steroid isomerase, J. Biol. Chem., 277, 30019, 10.1074/jbc.M204485200
Hiratsuka, 1990, A new class of rat glutathione S-transferase Yrs-Yrs inactivating reactive sulfate esters as metabolites of carcinogenic arylmethanols, J. Biol. Chem., 265, 11973, 10.1016/S0021-9258(19)38496-0
Hussey, 1992, Characterization of a human class-theta glutathione S-transferase with activity towards 1-menaphthyl sulphate, Biochem. J., 286, 929, 10.1042/bj2860929
Shokeer, 2005, Residue 234 in glutathione transferase T1-1 plays a pivotal role in the catalytic activity and the selectivity against alternative substrates, Biochem. J., 388, 387, 10.1042/BJ20042064
Tars, 2006, Structural basis of the suppressed catalytic activity of wild-type human glutathione transferase T1-1 compared to its W234R mutant, J. Mol. Biol., 355, 96, 10.1016/j.jmb.2005.10.049
Fernández-Cañón, 1998, Characterization of a fungal maleylacetoacetate isomerase gene and identification of its human homologue, J. Biol. Chem., 273, 329, 10.1074/jbc.273.1.329
Stacpoole, 1998, Clinical pharmacology and toxicology of dichloroacetate, Environ. Health Perspect., 106, 989, 10.1289/ehp.98106s4989
Tong, 1998, Glutathione transferase zeta-catalyzed biotransformation of dichloroacetic acid and other alpha-haloacids, Chem. Res. Toxicol., 11, 1332, 10.1021/tx980144f
Board, 2000, Identification, characterization, and crystal structure of the omega class glutathione transferases, J. Biol. Chem., 275, 24798, 10.1074/jbc.M001706200
Whitbread, 2003, Characterization of the human omega class glutathione transferase genes and associated polymorphisms, Pharmacogenetics, 13, 131, 10.1097/00008571-200303000-00003
Board, 2008, S-(4-Nitrophenacyl)glutathione is a specific substrate for glutathione transferase omega 1-1, Anal. Biochem., 374, 25, 10.1016/j.ab.2007.09.029
Matsuoka, 2000, Prostaglandin D2 as a mediator of allergic asthma, Science, 287, 2013, 10.1126/science.287.5460.2013
Inoue, 2003, Mechanism of metal activation of human hematopoietic prostaglandin D synthase, Nat. Struct. Biol., 10, 291, 10.1038/nsb907
Kanaoka, 1997, Cloning and crystal structure of hematopoietic prostaglandin D synthase, Cell, 90, 1085, 10.1016/S0092-8674(00)80374-8
Habig, 1974, The identity of glutathione S-transferase B with ligandin, a major binding protein of liver, Proc. Natl. Acad. Sci. U.S.A., 71, 3879, 10.1073/pnas.71.10.3879
Vargo, 2001, Affinity labeling of rat glutathione S-transferase isozyme 1-1 by 17β-iodoacetoxy-estradiol-3-sulfate, J. Biol. Chem., 276, 2031, 10.1074/jbc.M008212200
O'Sullivan, 2006, Chemical modification at subunit 1 of rat kidney alpha class glutathione transferase with 2,3,5,6-tetrachloro-1,4-benzoquinone: close structural connectivity between glutathione conjugation activity and non-substrate ligand binding, Biochem. Pharmacol., 71, 1629, 10.1016/j.bcp.2006.03.002
Meijerman, 2008, Combined action and regulation of phase II enzymes and multidrug resistance proteins in multidrug resistance in cancer, Cancer Treat. Rev., 34, 505, 10.1016/j.ctrv.2008.03.002
Adler, 1999, Regulation of JNK signaling by GSTp, EMBO J., 18, 1321, 10.1093/emboj/18.5.1321
Asakura, 2007, Conformational change in the active center region of GST P1-1, due to binding of a synthetic conjugate of DXR with GSH, enhanced JNK-mediated apoptosis, Apoptosis, 12, 1269, 10.1007/s10495-007-0053-0
Lyttle, 1994, Isozyme-specific glutathione-S-transferase inhibitors: design and synthesis, J. Med. Chem., 37, 189, 10.1021/jm00027a024
Oakley, 1997, The structures of human glutathione transferase P1-1 in complex with glutathione and various inhibitors at high resolution, J. Mol. Biol., 274, 84, 10.1006/jmbi.1997.1364
Ricci, 2005, 7-Nitro-2,1,3-benzoxadiazole derivatives, a new class of suicide inhibitors for glutathione S-transferases. Mechanism of action of potential anticancer drugs, J. Biol. Chem., 280, 26397, 10.1074/jbc.M503295200
Federici, 2009, Structural basis for the binding of the anticancer compound 6-(7-nitro-2,1,3-benzoxadiazol-4-ylthio)hexanol to human glutathione S-transferases, Cancer Res., 69, 8025, 10.1158/0008-5472.CAN-09-1314
Weber, 2010, Identification and characterisation of new inhibitors for the human hematopoietic prostaglandin D2 synthase, Eur. J. Med. Chem., 45, 447, 10.1016/j.ejmech.2009.10.025
Gouet, 2002, ENDscript: a workflow to display sequence and structure information, Bioinformatics, 18, 767, 10.1093/bioinformatics/18.5.767
Balchin, 2010, Stability of the domain interface contributes towards the catalytic function at the H-site of class alpha glutathione transferase A1-1, Biochim. Biophys. Acta, 1804, 2228, 10.1016/j.bbapap.2010.09.003
Gildenhuys, 2010, Arginine 15 stabilizes an SNAr reaction transition state and the binding of anionic ligands at the active site of human glutathione transferase A1-1, Biophys. Chem., 146, 118, 10.1016/j.bpc.2009.11.003
Achilonu, 2010, The role of a topologically conserved isoleucine in glutathione transferase structure, stability and function, Acta Crystallogr. Sect. F: Struct. Biol. Cryst. Commun., 66, 776, 10.1107/S1744309110019135
Balogh, 2009, Structural analysis of a glutathione transferase A1-1 mutant tailored for high catalytic efficiency with toxic alkenals, Biochemistry, 48, 7698, 10.1021/bi900895b
Grahn, 2006, New crystal structures of human glutathione transferase A1-1 shed light on glutathione binding and the conformation of the C-terminal helix, Acta Crystallogr. D: Biol. Crystallogr., 62, 197, 10.1107/S0907444905039296
Kuhnert, 2005, Tertiary interactions stabilise the C-terminal region of human glutathione transferase A1-1: a crystallographic and calorimetric study, J. Mol. Biol., 349, 825, 10.1016/j.jmb.2005.04.025
Cameron, 1995, Structural analysis of human alpha-class glutathione transferase A1-1 in the apo-form and in complexes with ethacrynic acid and its glutathione conjugate, Structure, 3, 717, 10.1016/S0969-2126(01)00206-4
Zhang, 2012, Structure-based redesign of GST A2-2 for enhanced catalytic efficiency with azathioprine, Chem. Biol., 19, 414, 10.1016/j.chembiol.2012.01.021
Bruns, 1999, Human glutathione transferase A4-4 crystal structures and mutagenesis reveal the basis of high catalytic efficiency with toxic lipid peroxidation products, J. Mol. Biol., 288, 427, 10.1006/jmbi.1999.2697
Patskovsky, 2000, The enhanced affinity for thiolate anion and activation of enzyme-bound glutathione is governed by an arginine residue of human mu class glutathione S-transferases, J. Biol. Chem., 275, 3296, 10.1074/jbc.275.5.3296
Norrgård, 2006, Alternative mutations of a positively selected residue elicit gain or loss of functionalities in enzyme evolution, Proc. Natl. Acad. Sci. U.S.A., 103, 4876, 10.1073/pnas.0600849103
Raghunathan, 1994, Crystal structure of human class mu glutathione transferase GSTM2-2. Effects of lattice packing on conformational heterogeneity, J. Mol. Biol., 238, 815, 10.1006/jmbi.1994.1336
Patskovsky, 1999, An asparagine–phenylalanine substitution accounts for catalytic differences between hGSTM3-3 and other human class mu glutathione S-transferases, Biochemistry, 38, 16187, 10.1021/bi991714t
Quesada-Soriano, 2011, Diuretic drug binding to human glutathione transferase P1-1: potential role of Cys-101 revealed in the double mutant C47S/Y108V, J. Mol. Recognit., 24, 220, 10.1002/jmr.1040
Quesada-Soriano, 2009, Influence of the H-site residue 108 on human glutathione transferase P1-1 ligand binding: structure–thermodynamic relationships and thermal stability, Protein Sci., 18, 2454, 10.1002/pro.253
Ang, 2009, Rational design of an organometallic glutathione transferase inhibitor, Angew. Chem. Int. Ed. Engl., 48, 3854, 10.1002/anie.200900185
Parker, 2008, The anti-cancer drug chlorambucil as a substrate for the human polymorphic enzyme glutathione transferase P1-1: kinetic properties and crystallographic characterisation of allelic variants, J. Mol. Biol., 380, 131, 10.1016/j.jmb.2008.04.066
Hegazy, 2008, Modulating catalytic activity by unnatural amino acid residues in a GSH-binding loop of GST P1-1, J. Mol. Biol., 376, 811, 10.1016/j.jmb.2007.12.013
Téllez-Sanz, 2006, Calorimetric and structural studies of the nitric oxide carrier S-nitrosoglutathione bound to human glutathione transferase P1-1, Protein Sci., 15, 1093, 10.1110/ps.052055206
Cesareo, 2005, Nitrosylation of human glutathione transferase P1-1 with dinitrosyl diglutathionyl iron complex in vitro and in vivo, J. Biol. Chem., 280, 42172, 10.1074/jbc.M507916200
Kong, 2003, Contribution of glycine 146 to a conserved folding module affecting stability and refolding of human glutathione transferase P1-1, J. Biol. Chem., 278, 1291, 10.1074/jbc.M209581200
Rossjohn, 2000, Structures of thermolabile mutants of human glutathione transferase P1-1, J. Mol. Biol., 302, 295, 10.1006/jmbi.2000.4054
Ortiz-Salmerón, 2003, Thermodynamic description of the effect of the mutation Y49F on human glutathione transferase P1-1 in binding with glutathione and the inhibitor S-hexylglutathione, J. Biol. Chem., 278, 46938, 10.1074/jbc.M305043200
Oakley, 1999, The ligandin (non-substrate) binding site of human Pi class glutathione transferase is located in the electrophile binding site (H-site), J. Mol. Biol., 291, 913, 10.1006/jmbi.1999.3029
Oakley, 1997, The glutathione conjugate of ethacrynic acid can bind to human pi class glutathione transferase P1-1 in two different modes, FEBS Lett., 419, 32, 10.1016/S0014-5793(97)01424-5
Oakley, 1998, Evidence for an induced-fit mechanism operating in pi class glutathione transferases, Biochemistry, 37, 9912, 10.1021/bi980323w
Prade, 1997, Structures of class pi glutathione S-transferase from human placenta in complex with substrate, transition-state analogue and inhibitor, Structure, 5, 1287, 10.1016/S0969-2126(97)00281-5
Ji, 1997, Structure and function of the xenobiotic substrate-binding site and location of a potential non-substrate-binding site in a class pi glutathione S-transferase, Biochemistry, 36, 9690, 10.1021/bi970805s
Zhou, 2011, Novel folding and stability defects cause a deficiency of human glutathione transferase omega 1, J. Biol. Chem., 286, 4271, 10.1074/jbc.M110.197822
Trujillo, 2012, Investigation of the binding pocket of human hematopoietic prostaglandin (PG) D2 synthase (hH-PGDS): a tale of two waters, Bioorg. Med. Chem. Lett., 22, 3795, 10.1016/j.bmcl.2012.04.004
Kado, 2012, Human hematopoietic prostaglandin D synthase inhibitor complex structures, J. Biochem., 151, 447, 10.1093/jb/mvs024