Cut-off points of homeostasis model assessment of insulin resistance, beta-cell function, and fasting serum insulin to identify future type 2 diabetes: Tehran Lipid and Glucose Study
Tóm tắt
To determine cut-off points of homeostasis model assessment of insulin resistance (HOMA-IR), β-cell function (HOMA-B), insulin sensitivity (HOMA-S), and fasting insulin for identifying the subjects with type 2 diabetes mellitus (T2DM) in Iranian adults using data from a prospective population-based study.
From participants of Tehran Lipid and Glucose Study, 4942 Iranian subjects, aged 20–86 years, were followed for incident T2DM. Fasting serum insulin was determined by the electrochemiluminescence immunoasaay. The associations between HOMA-IR, HOMA-B, HOMA-S, and fasting insulin and incident T2DM were evaluated using Cox proportional hazards models. The receiver operator characteristic curve analysis was used to determine the cut-off points of HOMA-IR, HOMA-B, HOMA-S, and fasting insulin. After 9.2 year follow-up, 346 (7.0 %) incident cases of T2DM were identified; the risk-factor-adjusted hazard ratios for HOMA1-IR, HOMA2-IR, HOMA1-B, HOMA2-B, HOMA1-S, HOMA2-S, and insulin were 1.15, 1.70, 0.732, 0.997, 0.974, 0.986, and 1.01 in women and 1.37, 1.67, 0.588, 0.993, 0.986, 0.991, and 1.06 in men, respectively (all p < 0.05 except for HOMA2-B in women). Optimal cut-off points for HOMA1-IR, HOMA2-IR, HOMA1-B, HOMA2-B, HOMA1-S, HOMA2-S, and insulin were 1.85, 1.41, 86.2, 72.5, 54.1, 63.7, and 11.13 µU/ml in women and 2.17, 1.18, 67.1, 74.6, 46.1, 74.1, and 9.16 µU/ml in men, respectively. HOMA-IR, HOMA-B (except for HOMA2-B in women), HOMA-S, and fasting insulin were independent predictors of T2DM. Optimal cut-off points of HOMA-IR, HOMA-B, HOMA-S, and fasting serum insulin were determined from a population-based study for identifying incident T2DM.
Tài liệu tham khảo
Stern SE, Williams K, Ferrannini E, DeFronzo RA, Bogardus C, Stern MP (2005) Identification of individuals with insulin resistance using routine clinical measurements. Diabetes 54(2):333–339. doi: 10.2337/diabetes.54.2.333
Borai A, Livingstone C, Kaddam I, Ferns G (2011) Selection of the appropriate method for the assessment of insulin resistance. BMC Med Res Methodol 11:158. doi:10.1186/1471-2288-11-158
Perseghin G, Calori G, Lattuada G, Ragogna F, Dugnani E, Garancini MP, Crosignani P, Villa M, Bosi E, Ruotolo G, Piemonti L (2012) Insulin resistance/hyperinsulinemia and cancer mortality: the Cremona study at the 15th year of follow-up. Acta Diabetol 49(6):421–428. doi:10.1007/s00592-011-0361-2
Abbasi F, Okeke Q, Reaven GM (2014) Evaluation of fasting plasma insulin concentration as an estimate of insulin action in nondiabetic individuals: comparison with the homeostasis model assessment of insulin resistance (HOMA-IR). Acta Diabetol 51(2):193–197. doi:10.1007/s00592-013-0461-2
Muniyappa R, Lee S, Chen H, Quon MJ (2008) Current approaches for assessing insulin sensitivity and resistance in vivo: advantages, limitations, and appropriate usage. Am J Physiol Endocrinol Metab 294(1):E15–E26. doi:10.1152/ajpendo.00645.2007
Esteghamati A, Ashraf H, Khalilzadeh O, Zandieh A, Nakhjavani M, Rashidi A, Haghazali M, Asgari F (2010) Optimal cut-off of homeostasis model assessment of insulin resistance (HOMA-IR) for the diagnosis of metabolic syndrome: third national surveillance of risk factors of non-communicable diseases in Iran (SuRFNCD-2007). Nutr Metab (Lond) 7:26. doi:10.1186/1743-7075-7-26
Després J-P, Marette A (1999) Obesity and insulin resistance: epidemiologic, metabolic, and molecular aspects. In: Reaven GM, Laws A (eds) Insulin resistance: the metabolic syndrome X. Humana Press Inc., Totowa, pp 51–81
Meier JJ, Bonadonna RC (2013) Role of reduced beta-cell mass versus impaired beta-cell function in the pathogenesis of type 2 diabetes. Diabetes Care 36(Suppl 2):S113–S119. doi:10.2337/dcS13-2008
Khardori R (2013) Changing paradigms in type 2 diabetes mellitus. Indian J Endocrinol Metab 17(Suppl 1):S68–S71. doi:10.4103/2230-8210.119509
Kahn SE, Hull RL, Utzschneider KM (2006) Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature 444(7121):840–846. doi:10.1038/nature05482
Song Y, Manson JE, Tinker L, Howard BV, Kuller LH, Nathan L, Rifai N, Liu S (2007) Insulin sensitivity and insulin secretion determined by homeostasis model assessment and risk of diabetes in a multiethnic cohort of women: the Women’s Health Initiative Observational Study. Diabetes Care 30(7):1747–1752. doi:10.2337/dc07-0358
Wallace TM, Levy JC, Matthews DR (2004) Use and abuse of HOMA modeling. Diabetes Care 27(6):1487–1495. doi:10.2337/diacare.27.6.1487
Caumo A, Perseghin G, Brunani A, Luzi L (2006) New insights on the simultaneous assessment of insulin sensitivity and beta-cell function with the HOMA2 method. Diabetes Care 29(12):2733–2734. doi:10.2337/dc06-0070
Tohidi M, Ghasemi A, Hadaegh F, Derakhshan A, Chary A, Azizi F (2014) Age- and sex-specific reference values for fasting serum insulin levels and insulin resistance/sensitivity indices in healthy Iranian adults: Tehran Lipid and Glucose Study. Clin Biochem 47(6):432–438. doi:10.1016/j.clinbiochem.2014.02.007
Perkins NJ, Schisterman EF (2006) The inconsistency of “optimal” cutpoints obtained using two criteria based on the receiver operating characteristic curve. Am J Epidemiol 163(7):670–675. doi:10.1093/aje/kwj063
Timoteo AT, Miranda F, Carmo MM, Ferreira RC (2014) Optimal cut-off value for homeostasis model assessment (HOMA) index of insulin-resistance in a population of patients admitted electively in a portuguese cardiology ward. Acta Med Port 27(4):473–479
Esteghamati A, Ashraf H, Esteghamati AR, Meysamie A, Khalilzadeh O, Nakhjavani M, Abbasi M (2009) Optimal threshold of homeostasis model assessment for insulin resistance in an Iranian population: the implication of metabolic syndrome to detect insulin resistance. Diabetes Res Clin Pract 84(3):279–287. doi:10.1016/j.diabres.2009.03.005
Geloneze B, Vasques AC, Stabe CF, Pareja JC, Rosado LE, Queiroz EC, Tambascia MA (2009) HOMA1-IR and HOMA2-IR indexes in identifying insulin resistance and metabolic syndrome: Brazilian Metabolic Syndrome Study (BRAMS). Arq Bras Endocrinol Metabol 53(2):281–287
Gayoso-Diz P, Otero-Gonzalez A, Rodriguez-Alvarez MX, Gude F, Garcia F, De Francisco A, Quintela AG (2013) Insulin resistance (HOMA-IR) cut-off values and the metabolic syndrome in a general adult population: effect of gender and age: EPIRCE cross-sectional study. BMC Endocr Disord 13:47. doi:10.1186/1472-6823-13-47
Yamada C, Moriyama K, Takahashi E (2012) Optimal cut-off point for homeostasis model assessment of insulin resistance to discriminate metabolic syndrome in non-diabetic Japanese subjects. J Diabetes Investig 3(4):384–387. doi:10.1111/j.2040-1124.2012.00194.x
Lee S, Choi S, Kim HJ, Chung YS, Lee KW, Lee HC, Huh KB, Kim DJ (2006) Cutoff values of surrogate measures of insulin resistance for metabolic syndrome in Korean non-diabetic adults. J Korean Med Sci 21(4):695–700
Derakhshan A, Tohidi M, Arshi B, Khalili D, Azizi F, Hadaegh F (2014) Relationship of hyperinsulinaemia, insulin resistance and beta-cell dysfunction with incident diabetes and pre-diabetes: the Tehran Lipid and Glucose Study. Diabet Med. doi:10.1111/dme.12560
Derakhshan A, Sardarinia M, Khalili D, Momenan AA, Azizi F, Hadaegh F (2014) Sex specific incidence rates of type 2 diabetes and its risk factors over 9 years of follow-up: Tehran Lipid and Glucose Study. PLoS One 9(7):e102563. doi:10.1371/journal.pone.0102563
Ainsworth BE, Jacobs DR Jr, Leon AS (1993) Validity and reliability of self-reported physical activity status: the Lipid Research Clinics questionnaire. Med Sci Sports Exerc 25(1):92–98
Kriska AM, Knowler WC, LaPorte RE, Drash AL, Wing RR, Blair SN, Bennett PH, Kuller LH (1990) Development of questionnaire to examine relationship of physical activity and diabetes in Pima Indians. Diabetes Care 13(4):401–411
Committee IPAQR (2005) Guidelines for data processing and analysis of the International Physical Activity Questionnaire (IPAQ). Retrieved 15 Nov 2010
Niemczyk S, Szamotulska K, Giers K, Jasik M, Bartoszewicz Z, Romejko-Ciepielewska K, Paklerska E, Gomolka M, Matuszkiewicz-Rowinska J (2013) Homeostatic model assessment indices in evaluation of insulin resistance and secretion in hemodialysis patients. Med Sci Monit 19:592–598. doi:10.12659/MSM.883978
Bozorgmanesh M, Hadaegh F, Saadat N, Azizi F (2012) Fasting glucose cutoff point: where does the risk terminate? Tehran Lipid and Glucose Study. Acta Diabetol 49(5):341–348. doi:10.1007/s00592-011-0298-5
Glumer C, Carstensen B, Sandbaek A, Lauritzen T, Jorgensen T, Borch-Johnsen K (2004) A Danish diabetes risk score for targeted screening: the Inter99 study. Diabetes Care 27(3):727–733
Rachek LI (2014) Free fatty acids and skeletal muscle insulin resistance. Prog Mol Biol Transl Sci 121:267–292. doi:10.1016/B978-0-12-800101-1.00008-9
Lorenzo C, Hazuda HP, Haffner SM (2012) Insulin resistance and excess risk of diabetes in Mexican-Americans: the San Antonio Heart Study. J Clin Endocrinol Metab 97(3):793–799. doi:10.1210/jc.2011-2272
Hanley AJ, Wagenknecht LE, Norris JM, Bryer-Ash M, Chen YI, Anderson AM, Bergman R, Haffner SM (2009) Insulin resistance, beta cell dysfunction and visceral adiposity as predictors of incident diabetes: the Insulin Resistance Atherosclerosis Study (IRAS) Family study. Diabetologia 52(10):2079–2086. doi:10.1007/s00125-009-1464-y
Soriguer F, Colomo N, Valdes S, Goday A, Rubio-Martin E, Esteva I, Castano L, Ruiz de Adana MS, Morcillo S, Calle A, Garcia-Fuentes E, Catala M, Gutierrez-Repiso C, Delgado E, Gomis R, Ortega E, Rojo-Martinez G (2014) Modifications of the homeostasis model assessment of insulin resistance index with age. Acta Diabetol 51(6):917–925. doi:10.1007/s00592-013-0523-5
Tabak AG, Jokela M, Akbaraly TN, Brunner EJ, Kivimaki M, Witte DR (2009) Trajectories of glycaemia, insulin sensitivity, and insulin secretion before diagnosis of type 2 diabetes: an analysis from the Whitehall II study. Lancet 373(9682):2215–2221. doi:10.1016/S0140-6736(09)60619-X
Kuwana B, Urayama O, Kawai K (2002) Reference value and cut-off value for diagnosis of insulin resistance in type 2 diabetes mellitus. Rinsho Byori 50(4):398–403
Gast KB, Tjeerdema N, Stijnen T, Smit JW, Dekkers OM (2012) Insulin resistance and risk of incident cardiovascular events in adults without diabetes: meta-analysis. PLoS One 7(12):e52036. doi:10.1371/journal.pone.0052036
Yamada C, Mitsuhashi T, Hiratsuka N, Inabe F, Araida N, Takahashi E (2011) Optimal reference interval for homeostasis model assessment of insulin resistance in a Japanese population. J Diabetes Investig 2(5):373–376. doi:10.1111/j.2040-1124.2011.00113.x
Lee JG, Lee S, Kim YJ, Jin HK, Cho BM, Jeong DW, Park HJ, Kim JE (2009) Multiple biomarkers and their relative contributions to identifying metabolic syndrome. Clin Chim Acta 408(1–2):50–55. doi:10.1016/j.cca.2009.07.006
Mukai N, Doi Y, Ninomiya T, Hata J, Hirakawa Y, Fukuhara M, Iwase M, Kiyohara Y (2012) Cut-off values of fasting and post-load plasma glucose and HbA1c for predicting Type 2 diabetes in community-dwelling Japanese subjects: the Hisayama Study. Diabet Med 29(1):99–106. doi:10.1111/j.1464-5491.2011.03378.x
Evans JM (2009) Omentectomy, visceral fat, and insulin resistance. Obesity (Silver Spring) 17(11):1979. doi:10.1038/oby.2009.283
Masharani U, Goldfine ID, Youngren JF (2009) Influence of gender on the relationship between insulin sensitivity, adiposity, and plasma lipids in lean nondiabetic subjects. Metabolism 58(11):1602–1608. doi:10.1016/j.metabol.2009.05.012
Usui C, Asaka M, Kawano H, Aoyama T, Ishijima T, Sakamoto S, Higuchi M (2010) Visceral fat is a strong predictor of insulin resistance regardless of cardiorespiratory fitness in non-diabetic people. J Nutr Sci Vitaminol (Tokyo) 56(2):109–116
Hadaegh F, Bozorgmanesh M, Ghasemi A, Harati H, Saadat N, Azizi F (2008) High prevalence of undiagnosed diabetes and abnormal glucose tolerance in the Iranian urban population: Tehran Lipid and Glucose Study. BMC Public Health 8(1):176
Banerjee R, Ray K, Bhattacherjee S, Guha S, Banerjee I, Nath I (2014) A study of insulin resistance and its clinico-metabolic associations among apparently healthy individuals attending a tertiary care hospital. Ann Med Health Sci Res 4(5):823–828. doi:10.4103/2141-9248.141572
Primeau V, Coderre L, Karelis AD, Brochu M, Lavoie ME, Messier V, Sladek R, Rabasa-Lhoret R (2011) Characterizing the profile of obese patients who are metabolically healthy. Int J Obes (Lond) 35(7):971–981. doi:10.1038/ijo.2010.216
Bell JA, Kivimaki M, Hamer M (2014) Metabolically healthy obesity and risk of incident type 2 diabetes: a meta-analysis of prospective cohort studies. Obes Rev 15(6):504–515. doi:10.1111/obr.12157
Boyko EJ, Jensen CC (2007) Do we know what homeostasis model assessment measures? If not, does it matter? Diabetes Care 30(10):2725–2728. doi:10.2337/dc07-1248
Manley SE, Luzio SD, Stratton IM, Wallace TM, Clark PM (2008) Preanalytical, analytical, and computational factors affect homeostasis model assessment estimates. Diabetes Care 31(9):1877–1883. doi:10.2337/dc08-0097
Reaven G (2011) Wanted!: a standardized measurement of plasma insulin concentration. Arterioscler Thromb Vasc Biol 31(5):954–955. doi:10.1161/ATVBAHA.111.224790
Kato M, Noda M, Suga H, Nakamura T, Matsumoto M, Kanazawa Y (2012) Haemoglobin A1c cut-off point to identify a high risk group of future diabetes: results from the Omiya MA Cohort Study. Diabet Med 29(7):905–910. doi:10.1111/j.1464-5491.2012.03572.x