The forthcoming applications of gold nanoparticles in drug and gene delivery systems
Tài liệu tham khảo
Pissuwan, 2006, Therapeutic possibilities of plasmonically heated gold nanoparticles, Trends Biotechnol., 24, 62, 10.1016/j.tibtech.2005.12.004
Huang, 2008, Plasmonic photothermal therapy (PPTT) using gold nanoparticles, Laser Med. Sci., 23, 217, 10.1007/s10103-007-0470-x
Hu, 2006, Gold nanostructures: engineering their plasmonic properties for biomedical applications, Chem. Soc. Rev., 1084, 10.1039/b517615h
Daniel, 2003, Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology, Chem. Rev., 104, 293, 10.1021/cr030698+
Pissuwan, 2008, Prospects for gold nanorod particles in diagnostic and therapeutic applications, Biotechnol. Gen. Eng. Rev., 25, 93, 10.5661/bger-25-93
Tong, 2009, Gold nanorods as contrast agents for biological imaging: optical properties, surface conjugation and photothermal effects, Photochem. Photobiol., 85, 21, 10.1111/j.1751-1097.2008.00507.x
Ghosh, 2008, Gold nanoparticles in delivery applications, Adv. Drug Deliv. Rev., 60, 1307, 10.1016/j.addr.2008.03.016
Chen, 2008, Gold nanoparticles: from nanomedicine to nanosensing, Nanotech. Sci. Appl., 1, 45, 10.2147/NSA.S3707
Skirtach, 2006, Laser-induced release of encapsulated materials inside living Cells, Angew. Chem., 118, 4728, 10.1002/ange.200504599
Sershen, 2000, Temperature-sensitive polymer-nanoshell composites for photothermally modulated drug delivery, J. Biomed.Mater. Res., 51, 293, 10.1002/1097-4636(20000905)51:3<293::AID-JBM1>3.0.CO;2-T
Gupta, 2002, Hydrogels: from controlled release to pH-responsive drug delivery, Drug Discov. Today, 7, 569, 10.1016/S1359-6446(02)02255-9
Vasir, 2005, Nanosystems in drug targeting: opportunities and challenges, Current Nanosci., 1, 47, 10.2174/1573413052953110
Pissuwan, 2007, Targeted destruction of murine macrophage cells with bioconjugated gold nanorods, J. Nanopart. Res., 9, 1109, 10.1007/s11051-007-9212-z
Bhattacharya, 2007, Attaching folic acid on gold nanoparticles using noncovalent interaction via different polyethylene glycol backbones and targeting of cancer cells, Nanomedicine, 3, 224, 10.1016/j.nano.2007.07.001
Saha, 2007, In vitro structural and functional evaluation of gold nanoparticles conjugated antibiotics, Nanoscale Res. Lett., 2, 614, 10.1007/s11671-007-9104-2
Gu, 2003, Presenting vancomycin on nanoparticles to enhance antimicrobial activities, Nano Lett., 3, 1261, 10.1021/nl034396z
Rosemary, 2006, Investigations of the antibacterial properties of ciprofloxacin@SiO2, Langmuir, 22, 10125, 10.1021/la061411h
Burygin, 2009, On the enhanced antibacteria activity of antibiotics mixed with gold nanoparticles, Nanoscale Res. Lett., 4, 794, 10.1007/s11671-009-9316-8
Geller, 1986, Acute amoxicillin nephrotoxicity following an overdose, Clin. Toxicol., 24, 175, 10.3109/15563658608990456
Chen, 2007, Methotrexate conjugated to gold nanoparticles inhibits tumor growth in a syngeneic lungtumor model, Mol. Pharm., 4, 713, 10.1021/mp060132k
Burygin, 2009, On the enhanced antibacterial activity of antibiotics mixed with gold nanoparticles, Nanoscale Res. Lett., 4, 794, 10.1007/s11671-009-9316-8
Liao, 2005, Gold nanorod bioconjugates, Chem. Mater., 17, 4636, 10.1021/cm050935k
Choi, 2003, Surface modification of functional nanoparticles for controlled drug delivery, J. Dispers. Sci. Technol., 24, 475, 10.1081/DIS-120021803
Paciotti, 2006, Colloidal gold nanoparticles: a novel nanoparticle platform for developing multifunctional tumor-targeted drug delivery vectors, Drug Dev. Res., 67, 47, 10.1002/ddr.20066
Kommareddy, 2007, Poly(ethyleneglycol)-modified thiolated gelatin nanoparticles for glutathione-responsive intracellular DNA delivery, Nanomedicine, 3, 32, 10.1016/j.nano.2006.11.005
Shenoy, 2006, Surface functionalization of gold nanoparticles using hetero-bifunctional poly(ethylene glycol) spacer for intracellular tracking and delivery, Int. J. Nanomedicine, 1, 51, 10.2147/nano.2006.1.1.51
Niidome, 2006, PEG-modified gold nanorods with a stealth character for in vivo applications, J. Control. Release, 114, 343, 10.1016/j.jconrel.2006.06.017
Niidome, 2009, Poly(ethylene glycol)-modified gold nanorods as a photothermal nanodevice for hyperthermia, J. Biomater. Sci. Polym. Ed., 20, 1203, 10.1163/156856209X452953
Niidome, 2008, In vivo monitoring of intravenously injected gold nanorods using near-infrared light, Small, 4, 1001, 10.1002/smll.200700438
Paciotti, 2004, Colloidal gold: a novel nanoparticle vector for tumor directed drug delivery, Drug Deliv., 11, 169, 10.1080/10717540490433895
Takahashi, 2008, Surface modification of gold nanorods using layer-by-layer technique for cellular uptake, J. Nanopart. Res., 10, 221, 10.1007/s11051-007-9227-5
Gu, 2009, Nuclear penetration of surface functionalized gold nanoparticles, Toxicol. Appl. Pharmacol., 237, 196, 10.1016/j.taap.2009.03.009
Gibson, 2007, Paclitaxel-functionalized gold nanoparticles, J. Am. Chem. Soc., 129, 11653, 10.1021/ja075181k
Fischer, 2002, Inhibition of chymotrypsin through surface binding using nanoparticle-based receptors, Proc. Natl. Acad. Sci. U.S.A., 99, 5013, 10.1073/pnas.082644099
Srivastava, 2005, Controlled assembly of protein-nanoparticle composites through protein surface recognition, Adv. Mater., 17, 617, 10.1002/adma.200400776
Hauck, 2008, Assessing the effect of surface chemistry on gold nanorod uptake, toxicity, and gene expression in mammalian cells, Small, 4, 153, 10.1002/smll.200700217
Gole, 2005, Polyelectrolyte-coated gold nanorods: synthesis, characterization and immobilization, Chem. Mater., 17, 1325, 10.1021/cm048297d
Harris, 2006, Optimization of plasmonic heating by gold nanospheres and nanoshells, J. Phys. Chem. B, 110, 10701, 10.1021/jp0606208
Norman, 2007, Targeted photothermal lysis of the pathogenic bacteria, Pseudomonas aeruginosa, with gold nanorods, Nano Lett., 8, 302, 10.1021/nl0727056
Pissuwan, 2009, Destruction and control of Toxoplasma gondii tachyzoites using gold nanosphere/antibody conjugates, Small, 5, 1030, 10.1002/smll.200801018
Sershen, 2000, Temperature-sensitive polymer-nanoshell composites for photothermally modulated drug delivery, J. Biomed.Mater. Res., 51, 293, 10.1002/1097-4636(20000905)51:3<293::AID-JBM1>3.0.CO;2-T
West, 2000, Applications of nanotechnology to biotechnology, Curr. Opin. Biotechnol., 11, 215, 10.1016/S0958-1669(00)00082-3
J.L. West, S.R. Sershen, N.J. Halas, S.J. Oldenburg, R.D. Averitt, Temperature-sensitive polymer/nanoshell composites for photothermally modulated drug delivery, US Patent 6428811(2002).
Radt, 2004, Optically addressable nanostructured capsules, Adv. Mat., 16, 2184, 10.1002/adma.200400920
Loo, 2004, Nanoshell-enabled photonics-based imaging and therapy of cancer, Technol. Cancer Res. Treat., 3, 33, 10.1177/153303460400300104
O'Neal, 2004, Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles, Cancer Lett., 209, 171, 10.1016/j.canlet.2004.02.004
Yamashita, 2009, Photochemical reaction of poly(ethylene glycol) on gold nanorods induced by near infrared pulsed-laser irradiation, Chem. Lett., 38, 226, 10.1246/cl.2009.226
Shiotani, 2007, Stable incorporation of gold nanorods into N-isopropylacrylamidehydrogels and their rapid shrinkage induced by near-infrared laser irradiation, Langmuir, 23, 4012, 10.1021/la0627967
Takahito, 2009, PNIPAM gel-coated gold nanorods for targeted delivery responding to a near-infrared laser, Bioconj. Chem., 20, 209, 10.1021/bc800480k
Ipe, 2003, Light-induced modulation of self-assembly on spiropyran-capped gold nanoparticles: a potential system for the controlled release of amino acid derivatives, J. Am. Chem. Soc., 125, 7174, 10.1021/ja0341182
Thomas, 2003, Chromophore-functionalized gold nanoparticles, Acc. Chem. Res., 36, 888, 10.1021/ar030030h
Cheng, 2008, Highly efficient drug delivery with gold nanoparticle vectors for in vivo photodynamic therapy of cancer, J. Am. Chem. Soc., 130, 10643, 10.1021/ja801631c
Felnerova, 2004, G.-k. Reinhard, C. Moser, Liposomes and virosomes as delivery systems for antigens, nucleic acids and drugs, Curr. Opin. Biotechnol., 15, 518, 10.1016/j.copbio.2004.10.005
Luo, 2000, Synthetic DNA delivery systems, Nature Biotech., 18, 33, 10.1038/71889
Roy, 1999, Oral gene delivery with chitosan-DNA nanoparticles generates immunologic protection in amurine model of peanut allergy, Nat. Med., 5, 387, 10.1038/7385
Yeh, 1997, Advances in adenoviral vectors: from genetic engineering to their biology, FASEB J., 11, 615, 10.1096/fasebj.11.8.9240963
Check, 2002, Gene therapy: a tragic setback, Nature, 420, 116, 10.1038/420116a
Crystal, 1995, Transfer of genes to humans: early lessons and obstacles to success, Science, 270, 404, 10.1126/science.270.5235.404
Zhang, 2006, Viral vectors for gene delivery in tissue engineering, Adv. Drug Deliv. Rev., 58, 515, 10.1016/j.addr.2006.03.006
Humbert, 2005, Physical methods for gene transfer: improving the kinetics of gene delivery into cells, Adv. Drug Deliv. Rev., 57, 733, 10.1016/j.addr.2004.12.007
Wiethoff, 2003, Barriers to nonviral gene delivery, J. Pharm. Sci., 92, 203, 10.1002/jps.10286
Thomas, 2003, Non-viral gene therapy: polycation-mediated DNA delivery, Appl. Microbiol. Biotechnol., 62, 27, 10.1007/s00253-003-1321-8
C. Boyer, P. Priyanto, T.P. Davis, D. Pissuwan, V. Bulmus, M. Kavallaris, W.Y. Teoh, R. Amal, M. Carroll, R. Woodward, T.S. Pierree, Anti-fouling magnetic nanoparticlesfor siRNA delivery, J. Mat.Chem. In press (2010). DOI: 10.1039/b914063h.
Gao, 2006, Carbon nanotube delivery of the GFPgene into mammalian cells, Chem. BioChem., 7, 239
Suzuki, 2008, Effective gene delivery with novel liposomal bubbles and ultrasonic destruction technology, Int. J. Pharm., 354, 49, 10.1016/j.ijpharm.2007.10.034
McIntosh, 2001, Inhibition of DNA transcription using cationic mixed monolayer protected gold clusters, J. Am. Chem. Soc., 123, 7626, 10.1021/ja015556g
Han, 2006, Stability of gold nanoparticle-bound DNA toward biological, physical, and chemical agents, Chem. Biol. Drug Des., 67, 78, 10.1111/j.1747-0285.2005.00324.x
Han, 2005, Controlled recovery of the transcription of nanoparticle-bound DNA by intracellular concentrations of glutathione, Bioconj. Chem., 16, 1356, 10.1021/bc050173j
Niidome, 2004, Preparation of primary amine-modified gold nanoparticles and their transfection ability into cultivated cells, Chem. Commun., 1978, 10.1039/b406189f
Bonoiu, 2009, Nanotechnology approach for drug addiction therapy: gene silencing using delivery of gold nanorod–siRNA nanoplex in dopaminergic neurons, PNAS, 106, 5546, 10.1073/pnas.0901715106
Mariko, 2005, Photo-Control of the polyplexes formation between DNA and photo-cation generatable water-soluble polymers, Curr. Drug Deliv., 2, 207, 10.2174/1567201054367986
Niidome, 2006, Pulsed-laser induced fragmentation and dissociation of DNA immobilized on gold nanoparticles, Mol. Cryst. Liq. Cryst., 445, 201/[491], 10.1080/15421400500367124
Chen, 2006, DNA-gold nanorod conjugates for remote control of localized gene expression by near infrared irradiation, J. Am. Chem. Soc., 128, 3709, 10.1021/ja0570180
Takahashi, 2005, Controlled release of plasmid DNA from gold nanorods induced by pulsed near-infrared light, Chem. Commun. (Camb.), 17, 2247, 10.1039/b500337g
Wijaya, 2008, Selective release of multiple DNA oligonucleotides from gold nanorods, ACS Nano, 3, 80, 10.1021/nn800702n
Lee, 2009, Remote optical switch for localized and selective control of geen interference, Nano Lett., 9, 562, 10.1021/nl802689k
Huang, 2008, Selective photothermal therapy for mixed cancer cells using aptamer-conjugated nanorods, Langmuir, 24, 11860, 10.1021/la801969c
Kawano, 2006, Stabilizing of plasmid DNA in vivo by PEG-modified cationic gold nanoparticles and the gene expression assisted with electrical pulses, J. Control. Release, 111, 382, 10.1016/j.jconrel.2005.12.022