Switch-mediated activation and retargeting of CAR-T cells for B-cell malignancies

David T. Rodgers1, Magdalena Mazagova1, Eric Hampton1, Yu Cao2, Nitya S. Ramadoss1, Ian R. Hardy1, Andrew D. Schulman1, Juanjuan Du1, Feng Wang1, Oded Singer1, Jennifer Ma1,3,4,5,6,7, Vanessa Núñez1, Jiayin Shen1, Ashley K. Woods1, Timothy M. Wright1, Peter G. Schultz1,2, Chan Hyuk Kim1, Travis S. Young1
1Department of Biology, California Institute for Biomedical Research, La Jolla, CA 92019;
2Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037
3Department of Infectious Diseases, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
4Fate Therapeutics, San Diego, CA 92121.
5Shriram Center, Stanford University, Stanford, CA 94305.
6University of Pennsylvania; and K
7Viral Vector Core, Weizmann Institute of Science, Rehovot 76100, Israel.

Tóm tắt

Significance Chimeric antigen receptor T (CAR-T) cell therapy has produced promising results in clinical trials but has been challenged by the inability to control engineered cells once infused into the patient. Here we present a generalizable method of controlling CAR-T cells using peptide-engrafted antibody-based molecular switches that act as a bridge between the target cell and CAR-T cell. We show that switches specific for CD19 govern the activity, tissue-homing, cytokine release, and phenotype of switchable CAR-T cells in a dose-titratable manner using xenograft mouse models of B-cell leukemia. We expect that this method of tuning CAR-T cell responses will provide improved safety and versatility of CAR–T-cell therapy in the clinic.

Từ khóa


Tài liệu tham khảo

10.1158/2159-8290.CD-12-0548

10.1182/blood-2013-08-519413

10.1007/s00262-014-1568-1

10.1056/NEJMoa1215134

10.1002/jgm.2637

10.1182/blood-2010-12-319780

10.3109/10428194.2012.715350

10.1038/mt.2010.31

10.1126/scitranslmed.3002842

10.1016/S0140-6736(14)61403-3

10.1111/bjh.13562

10.1056/NEJMoa1407222

10.1182/blood-2004-11-4564

10.1056/NEJMoa1106152

10.1126/science.aab4077

10.1158/1078-0432.CCR-12-1449

10.1158/0008-5472.CAN-11-3890

10.4161/onci.19730

10.1073/pnas.95.24.14130

10.1006/jmbi.2001.4575

10.1074/jbc.M309169200

10.1038/icb.1991.58

10.2174/156652310791111001

10.1016/j.addr.2012.09.039

10.1021/ja5042447

10.1073/pnas.1423668112

10.1002/anie.201303656

10.1038/mt.2009.83

10.4049/jimmunol.179.7.4910

10.4161/mabs.1.4.8895

10.4049/jimmunol.177.1.362

10.1182/blood-2014-11-612903

10.1046/j.0019-2805.2001.01341.x

10.1093/intimm/4.2.215

10.1158/2326-6066.CIR-14-0127

10.1158/1078-0432.CCR-13-0330

10.1089/hum.2013.075

10.1182/blood-2011-07-366419

10.1182/blood-2012-06-438002

10.1016/j.coi.2015.01.002

10.1038/mtna.2013.32

10.1016/j.it.2015.06.004

10.4049/jimmunol.0901276

10.1038/ni.2940

10.1073/pnas.1524193113

10.1158/0008-5472.CAN-13-1365

10.2165/00002018-200427140-00004

10.1038/clpt.2008.170

10.1158/1078-0432.CCR-07-0674

10.1016/j.immuni.2013.07.002

10.1097/MOT.0b013e3283626130

10.1097/PPO.0000000000000036

10.1038/mt.2010.24