Three-dimensional lattice Boltzmann simulation of suspensions containing both micro- and nanoparticles

International Journal of Heat and Fluid Flow - Tập 62 - Trang 560-567 - 2016
A. Xu1, T.S. Zhao1, L. Shi1, X.H. Yan1
1Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China

Tài liệu tham khảo

Aidun, 1998, Direct analysis of particulate suspensions with inertia using the discrete boltzmann equation, J. Fluid Mech., 373, 287, 10.1017/S0022112098002493 Amini, 2014, Inertial microfluidic physics, Lab Chip, 14, 2739, 10.1039/c4lc00128a Bouzidi, 2001, Momentum transfer of a boltzmann-lattice fluid with boundaries, Phys. Fluids (1994-present), 13, 3452, 10.1063/1.1399290 Chen, 2013, Momentum-exchange method in lattice boltzmann simulations of particle-fluid interactions, Phys. Rev. E, 88, 013303, 10.1103/PhysRevE.88.013303 Corcione, 2011, Empirical correlating equations for predicting the effective thermal conductivity and dynamic viscosity of nanofluids, Energy Conv. Manage., 52, 789, 10.1016/j.enconman.2010.06.072 Corcione, 2011, Rayleigh-bénard convection heat transfer in nanoparticle suspensions, Int. J. Heat Fluid Flow, 32, 65, 10.1016/j.ijheatfluidflow.2010.08.004 Das, 2003, Pool boiling characteristics of nano-fluids, Int. J. Heat Mass Transf., 46, 851, 10.1016/S0017-9310(02)00348-4 d’Humiéres, 2002, Multiple–relaxation–time lattice boltzmann models in three dimensions, Philosoph. Trans. R. Soc. London. Ser. A, 360, 437, 10.1098/rsta.2001.0955 Di Carlo, 2009, Inertial microfluidics, Lab Chip, 9, 3038, 10.1039/b912547g Feng, 1994, Direct simulation of initial value problems for the motion of solid bodies in a newtonian fluid part 1. sedimentation, J. Fluid Mech., 261, 95, 10.1017/S0022112094000285 Feng, 1994, Direct simulation of initial value problems for the motion of solid bodies in a newtonian fluid. part 2. couette and poiseuille flows, J. Fluid Mech., 277, 271, 10.1017/S0022112094002764 Glowinski, 2001, A fictitious domain approach to the direct numerical simulation of incompressible viscous flow past moving rigid bodies: application to particulate flow, J. Comput. Phys., 169, 363, 10.1006/jcph.2000.6542 Hatzell, 2015, Materials for suspension (semi-solid) electrodes for energy and water technologies, Chem. Soci. Rev., 44, 8664, 10.1039/C5CS00279F He, 2007, Heat transfer and flow behaviour of aqueous suspensions of tio2 nanoparticles (nanofluids) flowing upward through a vertical pipe, Int. J. Heat Mass Transf., 50, 2272, 10.1016/j.ijheatmasstransfer.2006.10.024 Van der Hoef, 2008, Numerical simulation of dense gas-solid fluidized beds: A multiscale modeling strategy, Ann. Rev. Fluid Mech., 40, 47, 10.1146/annurev.fluid.40.111406.102130 Huang, 2012, Shear viscosity of dilute suspensions of ellipsoidal particles with a lattice boltzmann method, Phys. Rev. E, 86, 046305, 10.1103/PhysRevE.86.046305 Huang, 2012, Rotation of spheroidal particles in couette flows, J. Fluid Mech., 692, 369, 10.1017/jfm.2011.519 Huang, 2014, Sedimentation of an ellipsoidal particle in narrow tubes, Phys. Fluids (1994-present), 26, 053302, 10.1063/1.4874606 Jebakumar, 2016, Lattice boltzmann method simulations of stokes number effects on particle trajectories in a wall-bounded flow, Comput. Fluids, 124, 208, 10.1016/j.compfluid.2015.07.020 Ladd, 1994, Numerical simulations of particulate suspensions via a discretized boltzmann equation. part 1. theoretical foundation, J. Fluid Mech., 271, 285, 10.1017/S0022112094001771 Lallemand, 2000, Theory of the lattice boltzmann method: Dispersion, dissipation, isotropy, galilean invariance, and stability, Phys. Rev. E, 61, 6546, 10.1103/PhysRevE.61.6546 Lallemand, 2003, Lattice boltzmann method for moving boundaries, J. Comput. Phys., 184, 406, 10.1016/S0021-9991(02)00022-0 Lee, 2008, Effective viscosities and thermal conductivities of aqueous nanofluids containing low volume concentrations of al2o3 nanoparticles, Int. J. Heat Mass Transf., 51, 2651, 10.1016/j.ijheatmasstransfer.2007.10.026 Lishchuk, 2006, Shear viscosity of bulk suspensions at low reynolds number with the three-dimensional lattice boltzmann method, Phys. Rev. E, 74, 017701, 10.1103/PhysRevE.74.017701 Maiga, 2005, Heat transfer enhancement by using nanofluids in forced convection flows, Int. J. Heat Fluid Flow, 26, 530, 10.1016/j.ijheatfluidflow.2005.02.004 Miyamura, 1981, Experimental wall correction factors of single solid spheres in triangular and square cylinders, and parallel plates, Int. J. Multiph. Flow, 7, 41, 10.1016/0301-9322(81)90013-6 Oztop, 2008, Numerical study of natural convection in partially heated rectangular enclosures filled with nanofluids, Int. J. Heat Fluid Flow, 29, 1326, 10.1016/j.ijheatfluidflow.2008.04.009 Peng, 2016, Implementation issues and benchmarking of lattice boltzmann method for moving rigid particle simulations in a viscous flow, Comput. Math. Appl., 72, 349, 10.1016/j.camwa.2015.08.027 Peskin, 1977, Numerical analysis of blood flow in the heart, J. Comput. Phys., 25, 220, 10.1016/0021-9991(77)90100-0 Qian, 1992, Lattice bgk models for navier-stokes equation, EPL (Europhys. Lett.), 17, 479, 10.1209/0295-5075/17/6/001 Segre, 1961, Radial particle displacements in poiseuille flow of suspensions, Nature, 189, 209, 10.1038/189209a0 Tao, 2016, An investigation on momentum exchange methods and refilling algorithms for lattice boltzmann simulation of particulate flows, Comput. Fluids, 133, 1, 10.1016/j.compfluid.2016.04.009 Tenneti, 2014, Particle-resolved direct numerical simulation for gas-solid flow model development, Ann. Rev. Fluid Mech., 46, 199, 10.1146/annurev-fluid-010313-141344 Yang, 2005, Migration of a sphere in tube flow, J. Fluid Mech., 540, 109, 10.1017/S0022112005005677 Yang, 2016, Lattice boltzmann study of wettability alteration in the displacement of nanoparticle-filled binary fluids, Comput. Fluids, 124, 157, 10.1016/j.compfluid.2015.03.027 Yang, 2015, Sedimentation of an oblate ellipsoid in narrow tubes, Phys. Rev. E, 92, 063009, 10.1103/PhysRevE.92.063009 Zarghami, 2013, Finite-volume lattice boltzmann modeling of thermal transport in nanofluids, Comput. Fluids, 77, 56, 10.1016/j.compfluid.2013.02.018 Zhang, 2016, Fundamentals and applications of inertial microfluidics: a review, Lab Chip, 16, 10, 10.1039/C5LC01159K