Three-dimensional lattice Boltzmann simulation of suspensions containing both micro- and nanoparticles
Tài liệu tham khảo
Aidun, 1998, Direct analysis of particulate suspensions with inertia using the discrete boltzmann equation, J. Fluid Mech., 373, 287, 10.1017/S0022112098002493
Amini, 2014, Inertial microfluidic physics, Lab Chip, 14, 2739, 10.1039/c4lc00128a
Bouzidi, 2001, Momentum transfer of a boltzmann-lattice fluid with boundaries, Phys. Fluids (1994-present), 13, 3452, 10.1063/1.1399290
Chen, 2013, Momentum-exchange method in lattice boltzmann simulations of particle-fluid interactions, Phys. Rev. E, 88, 013303, 10.1103/PhysRevE.88.013303
Corcione, 2011, Empirical correlating equations for predicting the effective thermal conductivity and dynamic viscosity of nanofluids, Energy Conv. Manage., 52, 789, 10.1016/j.enconman.2010.06.072
Corcione, 2011, Rayleigh-bénard convection heat transfer in nanoparticle suspensions, Int. J. Heat Fluid Flow, 32, 65, 10.1016/j.ijheatfluidflow.2010.08.004
Das, 2003, Pool boiling characteristics of nano-fluids, Int. J. Heat Mass Transf., 46, 851, 10.1016/S0017-9310(02)00348-4
d’Humiéres, 2002, Multiple–relaxation–time lattice boltzmann models in three dimensions, Philosoph. Trans. R. Soc. London. Ser. A, 360, 437, 10.1098/rsta.2001.0955
Di Carlo, 2009, Inertial microfluidics, Lab Chip, 9, 3038, 10.1039/b912547g
Feng, 1994, Direct simulation of initial value problems for the motion of solid bodies in a newtonian fluid part 1. sedimentation, J. Fluid Mech., 261, 95, 10.1017/S0022112094000285
Feng, 1994, Direct simulation of initial value problems for the motion of solid bodies in a newtonian fluid. part 2. couette and poiseuille flows, J. Fluid Mech., 277, 271, 10.1017/S0022112094002764
Glowinski, 2001, A fictitious domain approach to the direct numerical simulation of incompressible viscous flow past moving rigid bodies: application to particulate flow, J. Comput. Phys., 169, 363, 10.1006/jcph.2000.6542
Hatzell, 2015, Materials for suspension (semi-solid) electrodes for energy and water technologies, Chem. Soci. Rev., 44, 8664, 10.1039/C5CS00279F
He, 2007, Heat transfer and flow behaviour of aqueous suspensions of tio2 nanoparticles (nanofluids) flowing upward through a vertical pipe, Int. J. Heat Mass Transf., 50, 2272, 10.1016/j.ijheatmasstransfer.2006.10.024
Van der Hoef, 2008, Numerical simulation of dense gas-solid fluidized beds: A multiscale modeling strategy, Ann. Rev. Fluid Mech., 40, 47, 10.1146/annurev.fluid.40.111406.102130
Huang, 2012, Shear viscosity of dilute suspensions of ellipsoidal particles with a lattice boltzmann method, Phys. Rev. E, 86, 046305, 10.1103/PhysRevE.86.046305
Huang, 2012, Rotation of spheroidal particles in couette flows, J. Fluid Mech., 692, 369, 10.1017/jfm.2011.519
Huang, 2014, Sedimentation of an ellipsoidal particle in narrow tubes, Phys. Fluids (1994-present), 26, 053302, 10.1063/1.4874606
Jebakumar, 2016, Lattice boltzmann method simulations of stokes number effects on particle trajectories in a wall-bounded flow, Comput. Fluids, 124, 208, 10.1016/j.compfluid.2015.07.020
Ladd, 1994, Numerical simulations of particulate suspensions via a discretized boltzmann equation. part 1. theoretical foundation, J. Fluid Mech., 271, 285, 10.1017/S0022112094001771
Lallemand, 2000, Theory of the lattice boltzmann method: Dispersion, dissipation, isotropy, galilean invariance, and stability, Phys. Rev. E, 61, 6546, 10.1103/PhysRevE.61.6546
Lallemand, 2003, Lattice boltzmann method for moving boundaries, J. Comput. Phys., 184, 406, 10.1016/S0021-9991(02)00022-0
Lee, 2008, Effective viscosities and thermal conductivities of aqueous nanofluids containing low volume concentrations of al2o3 nanoparticles, Int. J. Heat Mass Transf., 51, 2651, 10.1016/j.ijheatmasstransfer.2007.10.026
Lishchuk, 2006, Shear viscosity of bulk suspensions at low reynolds number with the three-dimensional lattice boltzmann method, Phys. Rev. E, 74, 017701, 10.1103/PhysRevE.74.017701
Maiga, 2005, Heat transfer enhancement by using nanofluids in forced convection flows, Int. J. Heat Fluid Flow, 26, 530, 10.1016/j.ijheatfluidflow.2005.02.004
Miyamura, 1981, Experimental wall correction factors of single solid spheres in triangular and square cylinders, and parallel plates, Int. J. Multiph. Flow, 7, 41, 10.1016/0301-9322(81)90013-6
Oztop, 2008, Numerical study of natural convection in partially heated rectangular enclosures filled with nanofluids, Int. J. Heat Fluid Flow, 29, 1326, 10.1016/j.ijheatfluidflow.2008.04.009
Peng, 2016, Implementation issues and benchmarking of lattice boltzmann method for moving rigid particle simulations in a viscous flow, Comput. Math. Appl., 72, 349, 10.1016/j.camwa.2015.08.027
Peskin, 1977, Numerical analysis of blood flow in the heart, J. Comput. Phys., 25, 220, 10.1016/0021-9991(77)90100-0
Qian, 1992, Lattice bgk models for navier-stokes equation, EPL (Europhys. Lett.), 17, 479, 10.1209/0295-5075/17/6/001
Segre, 1961, Radial particle displacements in poiseuille flow of suspensions, Nature, 189, 209, 10.1038/189209a0
Tao, 2016, An investigation on momentum exchange methods and refilling algorithms for lattice boltzmann simulation of particulate flows, Comput. Fluids, 133, 1, 10.1016/j.compfluid.2016.04.009
Tenneti, 2014, Particle-resolved direct numerical simulation for gas-solid flow model development, Ann. Rev. Fluid Mech., 46, 199, 10.1146/annurev-fluid-010313-141344
Yang, 2005, Migration of a sphere in tube flow, J. Fluid Mech., 540, 109, 10.1017/S0022112005005677
Yang, 2016, Lattice boltzmann study of wettability alteration in the displacement of nanoparticle-filled binary fluids, Comput. Fluids, 124, 157, 10.1016/j.compfluid.2015.03.027
Yang, 2015, Sedimentation of an oblate ellipsoid in narrow tubes, Phys. Rev. E, 92, 063009, 10.1103/PhysRevE.92.063009
Zarghami, 2013, Finite-volume lattice boltzmann modeling of thermal transport in nanofluids, Comput. Fluids, 77, 56, 10.1016/j.compfluid.2013.02.018
Zhang, 2016, Fundamentals and applications of inertial microfluidics: a review, Lab Chip, 16, 10, 10.1039/C5LC01159K
