Poly(ether sulfone)s with pendent imidazolium for anion exchange membranes via click chemistry

Polymer - Tập 207 - Trang 122944 - 2020
Bin Shen1,2, Hongting Pu1,2
1Key Laboratory of Advanced Civil Engineering Materials, School of Materials Science & Engineering, Tongji University, Shanghai 201804, China
2Department of Polymeric Materials, School of Materials Science & Engineering, Tongji University, Shanghai, 201804, China

Tài liệu tham khảo

Chu, 2012, Opportunities and challenges for a sustainable energy future, Nature, 488, 294, 10.1038/nature11475 Shin, 2017, Hydrocarbon-based polymer electrolyte membranes: importance of morphology on ion transport and membrane stability, Chem. Rev., 117, 4759, 10.1021/acs.chemrev.6b00586 Gottesfeld, 2018, Anion exchange membrane fuel cells: current status and remaining challenges, J. Power Sources, 375, 170, 10.1016/j.jpowsour.2017.08.010 Pu, 2009, Proton-conducting polymers via free radical polymerization of diisopropyl-p-vinylbenzyl phosphonate and 1-vinylimidazole, Macromolecules, 42, 3000, 10.1021/ma900054t Wang, 2015, Sulfonated poly(aryl sulfide sulfone)s containing trisulfonated triphenylphosphine oxide moieties for proton exchange membrane, Electrochim. Acta, 177, 145, 10.1016/j.electacta.2014.11.124 Wang, 2018, Proton-conducting poly(ether sulfone ketone)s containing a high density of pendant sulfonic groups by a convenient and mild post-sulfonation, Polym. Chem., 9, 4984, 10.1039/C8PY00996A Wang, 2018, Synthesis and properties of new side-chain-type poly(arylene ether sulfone)s containing tri-imidazole cations as anion-exchange membranes, Int. J. Hydrogen Energy, 43, 20739, 10.1016/j.ijhydene.2018.08.182 Xing, 2018, Side-chain-type anion exchange membranes for vanadium flow battery: properties and degradation mechanism, J. Mater. Chem., 6, 22778, 10.1039/C8TA08813F Wang, 2020, Poly(aryl ether nitrile)s containing flexible side-chain-type quaternary phosphonium cations as anion exchange membranes, Sci. China Mater., 63, 533, 10.1007/s40843-019-1222-x Ran, 2017, Ion exchange membranes: new developments and applications, J. Membr. Sci., 522, 267, 10.1016/j.memsci.2016.09.033 Dekel, 2018, Review of cell performance in anion exchange membrane fuel cells, J. Power Sources, 375, 158, 10.1016/j.jpowsour.2017.07.117 Zhang, 2015, Highly stable anion exchange membranes based on quaternized polypropylene, J. Mater. Chem., 3, 12284, 10.1039/C5TA01420D Li, 2013, Highly stable, anion conductive, comb-shaped copolymers for alkaline fuel cells, J. Am. Chem. Soc., 135, 10124, 10.1021/ja403671u Dang, 2017, A comparative study of anion-exchange membranes tethered with different hetero-cycloaliphatic quaternary ammonium hydroxides, J. Mater. Chem., 5, 21965, 10.1039/C7TA06029G Li, 2018, A highly durable long side-chain polybenzimidazole anion exchange membrane for AEMFC, J. Membr. Sci., 546, 15, 10.1016/j.memsci.2017.09.064 Wang, 2015, Side-chain-type poly(arylene ether sulfone)s containing multiple quaternary ammonium groups as anion exchange membranes, J. Membr. Sci., 492, 281, 10.1016/j.memsci.2015.05.060 Lai, 2016, Enhanced performance of anion exchange membranes via crosslinking of ion cluster regions for fuel cells, J. Power Sources, 327, 56, 10.1016/j.jpowsour.2016.07.043 Du, 2018, Imidazolium-functionalized poly (arylene ether ketone) cross-linked anion exchange membranes, J. Membr. Sci., 566, 205, 10.1016/j.memsci.2018.09.020 Yang, 2018, Hyperbranched poly(arylene ether ketone) anion exchange membranes for fuel cells, J. Membr. Sci., 560, 77, 10.1016/j.memsci.2018.05.015 Ao, 2018, High performing all-solid electrochemical capacitor using chitosan/poly(acrylamide-co-diallyldimethylammonium chloride) as anion conducting membranes, Electrochim. Acta, 276, 319, 10.1016/j.electacta.2018.04.133 Xue, 2018, Semi-interpenetrating polymer networks by azide-alkyne cycloaddition as novel anion exchange membranes, J. Mater. Chem., 6, 11317, 10.1039/C8TA02177E Dong, 2016, Novel hydrophilic-hydrophobic block copolymer based on cardo poly(arylene ether sulfone)s with bis-quaternary ammonium moieties for anion exchange membranes, J. Membr. Sci., 518, 31, 10.1016/j.memsci.2016.06.036 Noonan, 2012, Phosphonium-functionalized polyethylene: a new class of base-stable alkaline anion exchange membranes, J. Am. Chem. Soc., 134, 18161, 10.1021/ja307466s Xue, 2017, Synthesis of novel guanidinium-based anion-exchange membranes with controlled microblock structures, J. Membr. Sci., 537, 151, 10.1016/j.memsci.2017.05.030 Lin, 2016, Side-chain-type anion exchange membranes bearing pendent imidazolium-functionalized poly(phenylene oxide) for fuel cells, J. Membr. Sci., 513, 206, 10.1016/j.memsci.2016.04.054 Lee, 2017, Highly conductive and durable poly(arylene ether sulfone) anion exchange membrane with end-group cross-linking, Energy Environ. Sci., 10, 275, 10.1039/C6EE03079C Rao, 2015, Comb-shaped alkyl imidazolium-functionalized poly(arylene ether sulfone)s as high performance anion-exchange membranes, J. Mater. Chem., 3, 8571, 10.1039/C5TA01123J Wang, 2018, Alkali-stable partially fluorinated poly(arylene ether) anion exchange membranes with a claw-type head for fuel cells, J. Mater. Chem., 6, 12455, 10.1039/C8TA03437K Dang, 2016, Alkali-stable and highly anion conducting poly(phenylene oxide)s carrying quaternary piperidinium cations, J. Mater. Chem., 4, 11924, 10.1039/C6TA01905F Yang, 2016, Stability challenge in anion exchange membrane for fuel cells, Curr. Opin. Chem. Eng., 12, 22, 10.1016/j.coche.2016.01.009 Wang, 2013, Alkaline polymer electrolyte membranes for fuel cell applications, Chem. Soc. Rev., 42, 5768, 10.1039/c3cs60053j Guo, 2016, Imidazolium-functionalized poly(arylene ether sulfone) anion-exchange membranes densely grafted with flexible side chains for fuel cells, ACS Appl. Mater. Interfaces, 8, 25279, 10.1021/acsami.6b07711 Hu, 2018, Poly(arylene ether nitrile) anion exchange membranes with dense flexible ionic side chain for fuel cells, J. Membr. Sci., 550, 254, 10.1016/j.memsci.2018.01.010 Gong, 2017, Design of pendent imidazolium side chain with flexible ether-containing spacer for alkaline anion exchange membrane, J. Membr. Sci., 523, 216, 10.1016/j.memsci.2016.09.050 Ran, 2018, Highly conductive and stabilized side-chain-type anion exchange membranes: ideal alternatives for alkaline fuel cell applications, J. Mater. Chem., 6, 17101, 10.1039/C8TA05876H Guo, 2017, Clustered multi-imidazolium side chains functionalized alkaline anion exchange membranes for fuel cells, J. Membr. Sci., 541, 214, 10.1016/j.memsci.2017.07.007 Shen, 2019, Fluorene-containing poly(arylene ether sulfone)s with imidazolium on flexible side chains for anion exchange membranes, Int. J. Hydrogen Energy, 44, 11057, 10.1016/j.ijhydene.2019.02.210 Pu, 2010, Towards high water retention of proton exchange membranes at elevated temperature via hollow nanospheres, J. Membr. Sci., 360, 123, 10.1016/j.memsci.2010.05.012 Lin, 2017, Triblock copolymer anion exchange membranes bearing alkyltethered cycloaliphatic quaternary ammonium-head-groups for fuel cells, J. Power Sources, 365, 282, 10.1016/j.jpowsour.2017.08.100 Yan, 2010, Anion exchange membranes by bromination of benzylmethyl-containing poly(sulfone)s, Macromolecules, 43, 2349, 10.1021/ma902430y Wang, 2011, Poly(arylene ether sulfone)s ionomers with pendant quaternary ammonium groups for alkaline anion exchange membranes: preparation and stability issues, J. Membr. Sci., 368, 246, 10.1016/j.memsci.2010.11.058 Zhu, 2018, A benzyltetramethylimidazolium-based membrane with exceptional alkaline stability in fuel cells: role of its structure in alkaline stability, J. Mater. Chem., 6, 527, 10.1039/C7TA09095A Zhang, 2011, Imidazolium functionalized polysulfone anion exchange membrane for fuel cell application, J. Mater. Chem., 21, 12744, 10.1039/c1jm10656b Weiber, 2015, Polysulfones with highly localized imidazolium groups for anion exchange membranes, J. Membr. Sci., 481, 164, 10.1016/j.memsci.2015.02.002 Weiber, 2016, Anion-conducting polysulfone membranes containing hexa- imidazolium functionalized biphenyl units, J. Membr. Sci., 520, 425, 10.1016/j.memsci.2016.07.051 Wang, 2016, Stable poly(arylene ether sulfone)s anion exchange membranes containing imidazolium cations on pendant phenyl rings, Electrochim. Acta, 190, 1057, 10.1016/j.electacta.2015.12.181 Dong, 2017, Pyrrolidinium-functionalized poly(arylene ether sulfone)s for anion exchange membranes: using densely concentrated ionic groups and block design to improve membrane performance, J. Membr. Sci., 535, 301, 10.1016/j.memsci.2017.04.054 Li, 2013, Towards high conductivity in anion-exchange membranes for alkaline fuel cells, ChemSusChem, 6, 1376, 10.1002/cssc.201300320 Pu, 2002, Proton transport in polybenzimidazole blended with H3PO4 or H2SO4, J. Polym. Sci., Part B: Polym. Phys., 40, 663, 10.1002/polb.10132 Chen, 2012, Degradation of imidazolium- and quaternary ammonium-functionalized poly(fluorenyl ether ketone sulfone) anion exchange membranes, ACS Appl. Mater. Interfaces, 4, 5775, 10.1021/am301557w Wang, 2015, Constructing pendent imidazolium-based poly(phenylene oxide)s for anion exchange membranes using a click reaction, RSC Adv., 5, 93415, 10.1039/C5RA17748K