Numerical investigation of melting enhancement for paraffin in an innovative finned-plate latent heat thermal energy storage unit

Journal of Energy Storage - Tập 43 - Trang 103222 - 2021
Hang Wang1, Hai Xu1, Changtian Liu1, Zhen Zhang1, Xiang Ling1, Feng Jiang1
1Jiangsu Key Laboratory of Process Enhancement and New Energy Equipment Technology, School of Mechanical and Power Engineering, Nanjing Tech University, No. 30 Pu Zhu South Road, Nanjing, Jiangsu 211816, China

Tài liệu tham khảo

Yan, 2020, Energy efficiency optimization of the waste heat recovery system with embedded phase change materials in greenhouses: a thermo-economic-environmental study, J. Energy Storage, 30, 10.1016/j.est.2020.101445 Li, 2021, Influence of fin parameters on the melting behavior in a horizontal shell-and-tube latent heat storage unit with longitudinal fins, J. Energy Storage, 34, 10.1016/j.est.2020.102230 Ren, 2021, Conjugate heat transfer in anisotropic woven metal fiber-phase change material composite, Appl. Therm. Eng., 189 Bouhal, 2018, Parametric CFD analysis and impact of PCM intrinsic parameters on melting process inside enclosure integrating fins: solar building applications, J. Build. Eng., 20, 634, 10.1016/j.jobe.2018.09.016 Qu, 2014, Numerical model of the passive thermal management system for high-power lithium ion battery by using porous metal foam saturated with phase change material, Int. J. Hydrog. Energy., 39, 3904, 10.1016/j.ijhydene.2013.12.136 Jiang, 2019, Lithium–ion battery thermal management using heat pipe and phase change material during discharge–charge cycle: a comprehensive numerical study, Appl. Energy, 242, 378, 10.1016/j.apenergy.2019.03.043 Arshad, 2020, Transient simulation of finned heat sinks embedded with PCM for electronics cooling, Therm. Sci. Eng. Prog., 18 Ren, 2020, Thermal management of electronic devices using pin-fin based cascade microencapsulated PCM/expanded graphite composite, Int. J. Heat Mass Transf., 149, 1, 10.1016/j.ijheatmasstransfer.2019.119199 Fang, 2020, Simultaneous charging and discharging performance for a latent thermal energy storage system with a microencapsulated phase change material, Appl. Energy, 275, 10.1016/j.apenergy.2020.115353 Sciacovelli, 2015, Maximization of performance of a PCM latent heat storage system with innovative fins, Appl. Energy, 137, 707, 10.1016/j.apenergy.2014.07.015 Gürel, 2020, A numerical investigation of the melting heat transfer characteristics of phase change materials in different plate heat exchanger (latent heat thermal energy storage) systems, Int. J. Heat Mass Transf., 148, 10.1016/j.ijheatmasstransfer.2019.119117 Lin, 2020, Experimental study of the thermal performance of a novel plate type heat exchanger with phase change material, Appl. Therm. Eng., 178, 10.1016/j.applthermaleng.2020.115630 Al-Abidi, 2013, Internal and external fin heat transfer enhancement technique for latent heat thermal energy storage in triplex tube heat exchangers, Appl. Therm. Eng., 53, 147, 10.1016/j.applthermaleng.2013.01.011 Yang, 2017, Thermal performance of a shell-and-tube latent heat thermal energy storage unit: role of annular fins, Appl. Energy, 202, 558, 10.1016/j.apenergy.2017.05.007 Longeon, 2013, Experimental and numerical study of annular PCM storage in the presence of natural convection, Appl. Energy, 112, 175, 10.1016/j.apenergy.2013.06.007 Xu, 2020, Optimization on the melting performance of triplex-layer PCMs in a horizontal finned shell and tube thermal energy storage unit, Appl. Therm. Eng., 176, 10.1016/j.applthermaleng.2020.115409 Elbahjaoui, 2019, Thermal performance of a solar latent heat storage unit using rectangular slabs of phase change material for domestic water heating purposes, Energy Build., 182, 111, 10.1016/j.enbuild.2018.10.010 Jevnikar, 2019, Investigation of the influence of heat source orientation on the transient flow behavior during PCM melting using particle image velocimetry, J. Energy Storage, 25, 10.1016/j.est.2019.100825 Prieto, 2016, Thermal performance of a heating system working with a PCM plate heat exchanger and comparison with a water tank, Energy Build., 122, 89, 10.1016/j.enbuild.2016.03.078 Prieto, 2017, Analysis of the thermal performance of flat plate PCM heat exchangers for heating systems, Appl. Therm. Eng., 116, 11, 10.1016/j.applthermaleng.2017.01.065 Hajizadeh, 2020, Solidification of PCM within a tank with longitudinal-Y shape fins and CuO nanoparticle, J. Mol. Liq., 317, 10.1016/j.molliq.2020.114188 Mehta, 2020, Thermal performance augmentation in latent heat storage unit using spiral fin: an experimental analysis, J. Energy Storage, 31, 10.1016/j.est.2020.101776 Liu, 2019, Solidification performance of a latent heat storage unit with innovative longitudinal triangular fins, Int. J. Heat Mass Transf., 138, 667, 10.1016/j.ijheatmasstransfer.2019.04.121 Skaalum, 2020, Heat transfer comparison between branching and non-branching fins in a latent heat energy storage system, Int. J. Therm. Sci., 152, 10.1016/j.ijthermalsci.2020.106331 Arıcı, 2020, Enhancement of PCM melting rate via internal fin and nanoparticles, Int. J. Heat Mass Transf., 156, 10.1016/j.ijheatmasstransfer.2020.119845 Zhao, 2020, Numerical study of melting performance enhancement for PCM in an annular enclosure with internal-external fins and metal foams, Int. J. Heat Mass Transf., 150, 10.1016/j.ijheatmasstransfer.2020.119348 Sabbah, 2009, Micro-channel heat sink with slurry of water with micro-encapsulated phase change material: 3D-numerical study, Appl. Therm. Eng., 29, 445, 10.1016/j.applthermaleng.2008.03.027 Gau, 1986, Melting and solidification of a pure metal on a vertical wall, J. Heat Transf., 108, 174, 10.1115/1.3246884 Brent, 1988, Enthalpy-porosity technique for modeling convection-diffusion phase change: application to the melting of a pure metal, Numer. Heat Transf., 13, 297, 10.1080/10407788808913615 Tiari, 2015, Numerical study of finned heat pipe-assisted thermal energy storage system with high temperature phase change material, Energy Convers. Manag., 89, 833, 10.1016/j.enconman.2014.10.053 Tiari, 2021, Numerical study of a latent heat thermal energy storage system enhanced by varying fin configurations, Case Stud. Therm. Eng., 25, 10.1016/j.csite.2021.100999 Wang, 2019, Preparation and thermal properties of sodium acetate trihydrate as a novel phase change material for energy storage, Energy, 167, 269, 10.1016/j.energy.2018.10.164 Kousksou, 2014, Melting over a wavy surface in a rectangular cavity heated from below, Energy, 64, 212, 10.1016/j.energy.2013.11.033 Madruga, 2018, Dynamic of plumes and scaling during the melting of a phase change material heated from below, Int. J. Heat Mass Transf., 126, 206, 10.1016/j.ijheatmasstransfer.2018.05.075 Kamkari, 2017, Numerical simulation and experimental verification of constrained melting of phase change material in inclined rectangular enclosures, Int. Commun. Heat Mass Transf., 88, 211, 10.1016/j.icheatmasstransfer.2017.07.023 El Ghandouri, 2020, Design and numerical investigations of natural convection heat transfer of a new rippling fin shape, Appl. Therm. Eng., 178, 10.1016/j.applthermaleng.2020.115670 Ji, 2018, Simulation on PCM melting enhancement with double-fin length arrangements in a rectangular enclosure induced by natural convection, Int. J. Heat Mass Transf., 127, 255, 10.1016/j.ijheatmasstransfer.2018.07.118