Numerical investigation of melting enhancement for paraffin in an innovative finned-plate latent heat thermal energy storage unit
Tài liệu tham khảo
Yan, 2020, Energy efficiency optimization of the waste heat recovery system with embedded phase change materials in greenhouses: a thermo-economic-environmental study, J. Energy Storage, 30, 10.1016/j.est.2020.101445
Li, 2021, Influence of fin parameters on the melting behavior in a horizontal shell-and-tube latent heat storage unit with longitudinal fins, J. Energy Storage, 34, 10.1016/j.est.2020.102230
Ren, 2021, Conjugate heat transfer in anisotropic woven metal fiber-phase change material composite, Appl. Therm. Eng., 189
Bouhal, 2018, Parametric CFD analysis and impact of PCM intrinsic parameters on melting process inside enclosure integrating fins: solar building applications, J. Build. Eng., 20, 634, 10.1016/j.jobe.2018.09.016
Qu, 2014, Numerical model of the passive thermal management system for high-power lithium ion battery by using porous metal foam saturated with phase change material, Int. J. Hydrog. Energy., 39, 3904, 10.1016/j.ijhydene.2013.12.136
Jiang, 2019, Lithium–ion battery thermal management using heat pipe and phase change material during discharge–charge cycle: a comprehensive numerical study, Appl. Energy, 242, 378, 10.1016/j.apenergy.2019.03.043
Arshad, 2020, Transient simulation of finned heat sinks embedded with PCM for electronics cooling, Therm. Sci. Eng. Prog., 18
Ren, 2020, Thermal management of electronic devices using pin-fin based cascade microencapsulated PCM/expanded graphite composite, Int. J. Heat Mass Transf., 149, 1, 10.1016/j.ijheatmasstransfer.2019.119199
Fang, 2020, Simultaneous charging and discharging performance for a latent thermal energy storage system with a microencapsulated phase change material, Appl. Energy, 275, 10.1016/j.apenergy.2020.115353
Sciacovelli, 2015, Maximization of performance of a PCM latent heat storage system with innovative fins, Appl. Energy, 137, 707, 10.1016/j.apenergy.2014.07.015
Gürel, 2020, A numerical investigation of the melting heat transfer characteristics of phase change materials in different plate heat exchanger (latent heat thermal energy storage) systems, Int. J. Heat Mass Transf., 148, 10.1016/j.ijheatmasstransfer.2019.119117
Lin, 2020, Experimental study of the thermal performance of a novel plate type heat exchanger with phase change material, Appl. Therm. Eng., 178, 10.1016/j.applthermaleng.2020.115630
Al-Abidi, 2013, Internal and external fin heat transfer enhancement technique for latent heat thermal energy storage in triplex tube heat exchangers, Appl. Therm. Eng., 53, 147, 10.1016/j.applthermaleng.2013.01.011
Yang, 2017, Thermal performance of a shell-and-tube latent heat thermal energy storage unit: role of annular fins, Appl. Energy, 202, 558, 10.1016/j.apenergy.2017.05.007
Longeon, 2013, Experimental and numerical study of annular PCM storage in the presence of natural convection, Appl. Energy, 112, 175, 10.1016/j.apenergy.2013.06.007
Xu, 2020, Optimization on the melting performance of triplex-layer PCMs in a horizontal finned shell and tube thermal energy storage unit, Appl. Therm. Eng., 176, 10.1016/j.applthermaleng.2020.115409
Elbahjaoui, 2019, Thermal performance of a solar latent heat storage unit using rectangular slabs of phase change material for domestic water heating purposes, Energy Build., 182, 111, 10.1016/j.enbuild.2018.10.010
Jevnikar, 2019, Investigation of the influence of heat source orientation on the transient flow behavior during PCM melting using particle image velocimetry, J. Energy Storage, 25, 10.1016/j.est.2019.100825
Prieto, 2016, Thermal performance of a heating system working with a PCM plate heat exchanger and comparison with a water tank, Energy Build., 122, 89, 10.1016/j.enbuild.2016.03.078
Prieto, 2017, Analysis of the thermal performance of flat plate PCM heat exchangers for heating systems, Appl. Therm. Eng., 116, 11, 10.1016/j.applthermaleng.2017.01.065
Hajizadeh, 2020, Solidification of PCM within a tank with longitudinal-Y shape fins and CuO nanoparticle, J. Mol. Liq., 317, 10.1016/j.molliq.2020.114188
Mehta, 2020, Thermal performance augmentation in latent heat storage unit using spiral fin: an experimental analysis, J. Energy Storage, 31, 10.1016/j.est.2020.101776
Liu, 2019, Solidification performance of a latent heat storage unit with innovative longitudinal triangular fins, Int. J. Heat Mass Transf., 138, 667, 10.1016/j.ijheatmasstransfer.2019.04.121
Skaalum, 2020, Heat transfer comparison between branching and non-branching fins in a latent heat energy storage system, Int. J. Therm. Sci., 152, 10.1016/j.ijthermalsci.2020.106331
Arıcı, 2020, Enhancement of PCM melting rate via internal fin and nanoparticles, Int. J. Heat Mass Transf., 156, 10.1016/j.ijheatmasstransfer.2020.119845
Zhao, 2020, Numerical study of melting performance enhancement for PCM in an annular enclosure with internal-external fins and metal foams, Int. J. Heat Mass Transf., 150, 10.1016/j.ijheatmasstransfer.2020.119348
Sabbah, 2009, Micro-channel heat sink with slurry of water with micro-encapsulated phase change material: 3D-numerical study, Appl. Therm. Eng., 29, 445, 10.1016/j.applthermaleng.2008.03.027
Gau, 1986, Melting and solidification of a pure metal on a vertical wall, J. Heat Transf., 108, 174, 10.1115/1.3246884
Brent, 1988, Enthalpy-porosity technique for modeling convection-diffusion phase change: application to the melting of a pure metal, Numer. Heat Transf., 13, 297, 10.1080/10407788808913615
Tiari, 2015, Numerical study of finned heat pipe-assisted thermal energy storage system with high temperature phase change material, Energy Convers. Manag., 89, 833, 10.1016/j.enconman.2014.10.053
Tiari, 2021, Numerical study of a latent heat thermal energy storage system enhanced by varying fin configurations, Case Stud. Therm. Eng., 25, 10.1016/j.csite.2021.100999
Wang, 2019, Preparation and thermal properties of sodium acetate trihydrate as a novel phase change material for energy storage, Energy, 167, 269, 10.1016/j.energy.2018.10.164
Kousksou, 2014, Melting over a wavy surface in a rectangular cavity heated from below, Energy, 64, 212, 10.1016/j.energy.2013.11.033
Madruga, 2018, Dynamic of plumes and scaling during the melting of a phase change material heated from below, Int. J. Heat Mass Transf., 126, 206, 10.1016/j.ijheatmasstransfer.2018.05.075
Kamkari, 2017, Numerical simulation and experimental verification of constrained melting of phase change material in inclined rectangular enclosures, Int. Commun. Heat Mass Transf., 88, 211, 10.1016/j.icheatmasstransfer.2017.07.023
El Ghandouri, 2020, Design and numerical investigations of natural convection heat transfer of a new rippling fin shape, Appl. Therm. Eng., 178, 10.1016/j.applthermaleng.2020.115670
Ji, 2018, Simulation on PCM melting enhancement with double-fin length arrangements in a rectangular enclosure induced by natural convection, Int. J. Heat Mass Transf., 127, 255, 10.1016/j.ijheatmasstransfer.2018.07.118