Microstructure and Mechanical Characterization of Al–SiC MMC Tube Produced via Friction Stir Back Extrusion

Springer Science and Business Media LLC - Tập 74 - Trang 2609-2620 - 2021
Masoud Mahmoodi1, Kamin Tahmasbi1, Milad Zaroodi1
1Faculty of Mechanical Engineering, Semnan University, Semnan, Iran

Tóm tắt

Friction stir back extrusion (FSBE) is a newfangled method to produce high strength tubes with a fine-grained structure. In the following experiment, using a solid cylindrical AA7075 aluminum alloy bar and some SiC powder, the Al-SiC composite tube has been produced by the process of FSBE. To examine the microstructural properties of samples, both the scanning electron microscopy and optical microscopy were applied. Microhardness and tensile tests were also used to assure mechanical properties of the tubes. Furthermore, the phase analysis of samples was carried out via the X-ray diffraction technique. It was observed that SiC particles were almost distributed homogeneously among the aluminum phase. In addition, grains sizes of the composite tube were decreased in comparison with the aluminum tube. The XRD pattern analysis of the composite specimen demonstrated that the peaks of Al and SiC appear as the main phase and then new phases of Al4C3 and Al4SiC4 will emerge subsequent to the process.

Tài liệu tham khảo

Kim D, Lee H G, Park J Y, Park J Y, and Kim W J, Corros. Sci. 98 (2015) 304. Yang H, Zhou X, Yu J, Wang H, and Huang Z, Ceram. Int. 41 (2015) 14692. Opalka S M, and Zhu T, Micropor. Mesopor. Mater. 222 (2016) 256. Li Z, Li C, Gao Z, Liu Y, Liu X, and Guo Q, Mater. Charact. 110 (2015) 170. Wu Y, Zhang J, Liao H, Li G, and Wu Y, J. Alloys Compd. 660 (2016) 141. Zhang L, Xu H, Wang Z, Li Q, and Wu J, J. Alloys Compd. 678 (2016) 23. Tang J, Shen Y, and Li J, J. Manuf. Process. 38 (2019) 279. Thomas W, Nicholas E, and Jones S, Friction extrusion metal working, US. NO Patent 5,262,123 (1993). Tang W, and Reynolds A P, J. Mater. Process. Technol. 210 (2010) 2231. Sharifzadeh M, Ansari M, Narvan M, Behnagh R A, Araee A, and Givi M K B, T. Nonferr. Metal. SOC. 25 (2015) 1847. Zhang H, Li X, Tang W, Deng X, Reynolds A P, and Sutton M A, J. Mater. Process. Technol. 221 (2015) 21. Tahmasbi K, and Mahmoodi M, J. Manuf. Process. 32 (2018) 151. Tahmasbi K, Mahmoodi M, and Tavakoli H, T. Nonferr. Metal. SOC. 29 (2019) 1601. Abu-Farha F, Scr. Mater. 66 (2012) 615. Khorrami M S, and Movahedi M, Mater. Des. 65 (2015) 74. Dinaharan I, Sathiskumar R, Vijay S J, and Murugan N, Procedia Mater. Sci. 5 (2014) 1502. Whalen S, Joshi V, Overman N, Caldwell D, Lavender C, and Skszek T, Magnesium Technology. (2017) 315. Overman N, Whalen S, Bowden M, Olszta M, Kruska K, and Clark T, Mater. Sci. Eng A. 701 (2017) 56. Dolatkhah A, Golbabaei P, Givi M B, and Molaiekiya F, Mater. Des. 37 (2012) 458. Ghanbari D, Asgharani M K, and Amini K, Mechanika. 21 (2015) 430. Hernández J, Medellín H, and Lange D, Mater. Sci. Eng. A. 650 (2016) 323. Baffari D, Buffa G, Campanella D, and Fratini L, Procedia Eng. 207 (2017) 419. Luo H, Shin Y, Yu Y, Cetin D, Ludwig K, and Pal U, Appl. Surf. Sci. 323 (2014) 65. Kuo L, Chen G, Chang Y S, Fu J X, Chang Y H, and Hwang W S, Ceram. Int. 38 (2012) 3729. Hiramoto M, Okinaka N, and Akiyama T, J. Alloys Compd. 520 (2012) 59. Zhang H J, Zhao L Y, and Liu X, Trans. Indian. Inst. Met. 73 (2020) 3019. Mahmoodi M, Sedighi M, and Tanner D A, Proc. Inst. Mech. Eng., Part B: J. Eng. Manuf. 228 (2014) 1592. Hafizpour H, Sanjari M, and Simchi A, Mater. Des. 30 (2009) 1518. Deore H A, Bhardwaj A, Rao A G, Mishra J, and Hiwarkar V D, Def. Technol. 16 (2020) 1039. Das H, Mondal M, Hong S T, Chun D M, and Han H N, Int. J. Precis. Eng. Manuf. 5 (2018) 151. Netto N, Zhao L, Soete J, Pyka G, and Simar A, J. Mater. Process. Technol. 283 (2020) 116722. Kumar D T A, Kumar K G B, and Pattanaik A, Trans. Indian. Inst. Met. 73 (2020) 3105. Mahmoodi M, Naderi A, and Dini G, J. Mater. Eng. Perform. 26 (2017) 6022. Deng X, and Chawla N, J. Mater. Sci. 41 (2006) 5731. Song M, T. Nonferr. Metal. SOC. 19 (2009) 1400.