Soft X-ray ptychography as a tool for in operando morphochemical studies of electrodeposition processes with nanometric lateral resolution

Benedetto Bozzini1, George Kourousias2, Alessandra Gianoncelli2, Michael W.M. Jones3,4, Grant Van Riessen5, Maya Kiskinova2
1Dipartimento di Ingegneria dell'Innovazione, Università del Salento, via Monteroni, 73100 Lecce, Italy
2Sincrotrone Trieste S.C.p.A., ELETTRA, s.s. 14 km 163.5 in Area Science Park, 34012 Basovizza, Trieste, Italy
3Faculty of Health and Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, 4000, Australia
4ARC Centre of Excellence for Advanced Molecular Imaging, La Trobe Institute of Molecular Science, La Trobe University, Bundoora, 3089, Australia
5Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, 3086, Australia

Tài liệu tham khảo

Popov, 2002 Bozzini, 2012, Morphogenesis in metal electrodeposition, Note di Matematica, 32, 7 Bozzini, 2013, Spatio-temporal organization in alloy electrodeposition: a morphochemical mathematical model and its experimental validation, J. Solid State Electrochem., 17, 467, 10.1007/s10008-012-1945-7 Gianoncelli, 2015, High-lateral resolution X-ray fluorescence microspectroscopy and dynamic mathematical modelling as tools for the study of electrodeposited electrocatalysts, X-ray Spectrom., 44, 263, 10.1002/xrs.2617 Lacitignola, 2015, Spatio-temporal organization in a morphochemical electrodeposition model: hopf and turing instabilities and their interplay, Eur. J. Appl. Math., 26, 143, 10.1017/S0956792514000370 McBreen, 1978, The zinc electrode, Adv. Electroch. El. Eng., 11, 273 Desai, 2014, Morphological evolution of nanocluster aggregates and single crystals in alkaline zinc electrodeposition, J. Phys. Chem. C, 118, 8656, 10.1021/jp411104a Banik, 2015, Suppressing dendritic growth during alkaline zinc electrodeposition using polyethylenimine additive, Electrochim. Acta, 179, 475, 10.1016/j.electacta.2014.12.100 Rosen, 2015, Electrodeposited Zn dendrites with enhanced CO selectivity for electrocatalytic CO2 reduction, ACS Catal., 5, 4586, 10.1021/acscatal.5b00922 Diggle, 1969, The mechanism of the dendritic electrocrystallization of zinc, J. Electrochem. Soc., 116, 1503, 10.1149/1.2411588 Lu, 2014, Stable lithium electrodeposition in liquid and nanoporous solid electrolytes, Nat. Mater., 13, 961, 10.1038/nmat4041 Chen, 1990, Fractal analysis of zinc electrodeposition, J. Electrochem. Soc., 137, 2047, 10.1149/1.2086862 Lucas, 2010, Simulation at high temperature of atomic deposition, islands coalescence, Ostwald and inverse Ostwald ripening with a general simple kinetic Monte Carlo code, Thin Solid Films, 518, 5355, 10.1016/j.tsf.2010.04.064 Hamilton, 1963, A theory of dendritic growth in electrolytes, Electrochim. Acta, 8, 731, 10.1016/0013-4686(63)85018-5 Chazalviel, 1990, Electrochemical aspects of the generation of ramified metallic electrodeposits, Phys. Rev. A, 42, 7355, 10.1103/PhysRevA.42.7355 Bozzini, 2012, Coupling of morphology and chemistry leads to morphogenesis in electrochemical metal growth: a review of the reaction-diffusion approach, Acta Appl. Math., 122, 53 Cogswell, 2015, Quantitative phase-field modeling of dendritic electrodeposition, Phys. Rev. E, 92, 011301, 10.1103/PhysRevE.92.011301 Wang, 2015, Dendrite growth in the recharging process of zinc-air batteries, J. Mater. Chem. A, 22648, 10.1039/C5TA06366C Wang, 2014, Morphology control of zinc regeneration for zinc-air fuel cell and battery, J. Power Sources, 271, 65, 10.1016/j.jpowsour.2014.07.182 Bozzini, 2012, Soft X-ray imaging and spectromicroscopy: new insights in chemical state and morphology of key components in operating fuel cells, Chem. Eur. J., 18, 10196, 10.1002/chem.201201313 Holt, 2013, Nanoscale hard X-Ray microscopy methods for materials studies, Ann. Rev. Mater. Res., 43, 183, 10.1146/annurev-matsci-071312-121654 Hitchcock, 2014, J. Synchrotron Rad., 21, 1019, 10.1107/S1600577514013046 Zhong, 2014, Adv. Mater., 26, 7786, 10.1002/adma.201304507 Kourousias, 2016, Shedding light on electrodeposition dynamics tracked in situ via soft X-ray coherent diffraction imaging, Nano Res., 9, 2046, 10.1007/s12274-016-1095-9 Hoppe, 2013, High-resolution chemical imaging of gold nanoparticles using hard x-ray ptychography, Appl. Phys. Lett., 102, 203104, 10.1063/1.4807020 Jones, 2013, Phase-diverse Fresnel coherent diffractive imaging of malaria parasite-infected red blood cells in the water window, Opt. Express, 21, 32151, 10.1364/OE.21.032151 Clark, 2014, Dynamic imaging using ptychography, Phys. Rev. Lett., 112, 113901, 10.1103/PhysRevLett.112.113901 Jones, 2014, Rapid, low dose X-ray diffractive imaging of the malaria parasite Plasmodium falciparum, Ultramicroscopy, 143, 88, 10.1016/j.ultramic.2013.09.003 Shapiro, 2014, Chemical composition mapping with nanometre resolution by soft X-ray microscopy, Nat. Photonics, 8, 765, 10.1038/nphoton.2014.207 Miao, 1999, Extending the methodology of X-ray crystallography to allow imaging of micrometre-sized non-crystaline specimens, Nature, 400, 342, 10.1038/22498 Marchesini, 2003, X-ray image reconstruction from a diffraction pattern alone, Phys. Rev. B, 68, 140101, 10.1103/PhysRevB.68.140101 Quiney, 2005, Iterative image reconstruction algorithms using wave-front intensity and phase variation, Opt. Lett., 30, 1638, 10.1364/OL.30.001638 Chapman, 2010, Coherent lensless X-ray imaging, Nat. Photonics, 4, 833, 10.1038/nphoton.2010.240 Mancuso, 2010, Coherent imaging of biological samples with femtosecond pulses at the free-electron laser FLASH, New J. Phys., 12, 035003, 10.1088/1367-2630/12/3/035003 Shapiro, 2005, Biological imaging by soft x-ray diffraction microscopy, PNAS, 102, 15343, 10.1073/pnas.0503305102 Williams, 2006, Fresnel coherent diffractive imaging, Phys. Rev. Lett., 97, 025506, 10.1103/PhysRevLett.97.025506 Abbey, 2008, Quantitative coherent diffractive imaging of an integrated circuit at a spatial resolution of 20 nm, Appl. Phys. Lett., 93, 214101, 10.1063/1.3025819 Clark, 2008, Quantitative phase measurement in coherent diffraction imaging, Opt. Express, 16, 3342, 10.1364/OE.16.003342 Abbey, 2008, Keyhole coherent diffractive imaging, Nat. Phys., 4, 394, 10.1038/nphys896 Zhang, 2013, Full field tabletop EUV coherent diffractive imaging in a transmission geometry, Opt. Express, 21, 21970, 10.1364/OE.21.021970 Rodenburg, 2007, Hard X-ray lensless imaging of extended objects, Phys. Rev. Lett., 98, 034801, 10.1103/PhysRevLett.98.034801 Thibault, 2009, Probe retrieval in ptychographic coherent diffractive imaging, Ultramicroscopy, 109, 338, 10.1016/j.ultramic.2008.12.011 Beckers, 2011, Chemical contrast in soft X-Ray ptychography, Phys. Rev. Lett., 107, 208101, 10.1103/PhysRevLett.107.208101 Takahashi, 2011, Multiscale element mapping of buried structures by ptychographic x-ray diffraction microscopy using anomalous scattering, Appl. Phys. Lett., 99, 131905, 10.1063/1.3644396 Maiden, 2013, Soft X-ray spectromicroscopy using ptychography with randomly phased illumination, Nat. Commun., 4, 1669, 10.1038/ncomms2640 Putkunz, 2011, Phase-diverse coherent diffractive imaging: high sensitivity with low dose, Phys. Rev. Lett., 106, 013903, 10.1103/PhysRevLett.106.013903 Guizar-Sicairos, 2014, High-throughput ptychography using Eiger: scanning X-ray nanoimaging of extended regions, Opt. Express, 22, 14859, 10.1364/OE.22.014859 Jones, 2016, Molar concentration from sequential 2-D water-window X-ray ptychography and X-ray fluorescence in hydrated cells, Sci. Rep., 6, 24280, 10.1038/srep24280 Schropp, 2010, Hard X-ray nanobeam characterization by coherent diffraction microscopy, Appl. Phys. Lett., 96, 091102, 10.1063/1.3332591 Wittler, 2016, The influence of noise on image quality in phase-diverse coherent diffraction imaging, J. Opt., 18, 024001, 10.1088/2040-8978/18/2/024001 Nam, 2013, Imaging fully hydrated whole cells by coherent X-ray diffraction microscopy, Phys. Rev. Lett., 110, 098103, 10.1103/PhysRevLett.110.098103 Kim, 2014, Fresnel coherent diffractive imaging of elemental distributions in nanoscale binary compounds, Opt. Express, 22, 5528, 10.1364/OE.22.005528 Luu, 2011, Multi-wavelength elemental contrast absorption imaging, Opt. Express, 19, 25969, 10.1364/OE.19.025969 van Riessen, 2013, A soft X-ray beamline for quantitative nanotomography using ptychography Davidson, 2017 Bozzini, 2014, Fabrication of a sealed electrochemical microcell for in situ soft X-ray microspectroscopy and testing with in situ Co-polypyrrole composite electrodeposition for Pt-free oxygen electrocatalysis, Anal. Chemistry, 86, 664, 10.1021/ac403004v Williamson, 2003, Dynamic microscopy of nanoscale cluster growth at the solid–liquid interface, Nat. Mater., 2, 532, 10.1038/nmat944 Grogan, 2010, The nanoaquarium: a platform for In situ transmission electron microscopy in liquid media, J. Microelectromech. Syst., 19, 885, 10.1109/JMEMS.2010.2051321 Yu, 2012, Three-dimensional tracking and visualization of hundreds of Pt-Co fuel cell nanocatalysts during electrochemical aging, Nano Lett., 12, 4417, 10.1021/nl203920s Abellan, 2014, Probing the degradation mechanisms in electrolyte solutions for Li-ion batteries by in situ transmission electron microscopy, Nano Lett., 14, 1293, 10.1021/nl404271k Holtz, 2014, Nanoscale imaging of lithium ion distribution during In situ operation of battery electrode and electrolyte, Nano Lett., 14, 1453, 10.1021/nl404577c Liu, 2014, In situ transmission electron microscopy study of electrochemical sodiation and potassiation of carbon nanofibers, Nano Lett., 14, 3445, 10.1021/nl500970a Hun Park, 2015, Control of electron beam-induced Au nanocrystal growth kinetics through solution, Chem. Nano Lett., 15, 5314, 10.1021/acs.nanolett.5b01677 Hodnik, 2016, Importance and challenges of electrochemical in situ liquid cell electron microscopy for energy conversion research, Acc. Chem. Res., 49, 2015, 10.1021/acs.accounts.6b00330 Bozzini, 2015, Electrodeposition and ageing of Mn-based binary composite oxygen reduction reaction electrocatalysts, ChemElectroChem, 2, 1541, 10.1002/celc.201500138 Gianoncelli, 2015, X-Ray microscopy radiation damage on fixed cells investigated with synchrotron, Sci. Rep., 5, 10250, 10.1038/srep10250 Bacquart, 2007, Subcellular speciation analysis of trace element oxidation states using synchrotron radiation micro-X-ray absorption near-Edge structure, Anal. Chem., 79, 7353, 10.1021/ac0711135 Kijewska, 2012, Photopolymerized polypyrrole microvessels, Chem. Eur. J., 18, 310, 10.1002/chem.201101400 Bozzini, 2015, In situ soft X-ray fluorescence and absorption microspectroscopy: a study of Mn-Co/polypyrrole electrodeposition, J. Vac. Sci. Technol. A, 33, 031102, 10.1116/1.4917551 Bocchetta, 2016, ORR stability of Mn–Co/polypyrrole nanocomposite electrocatalysts studied by quasi in-situ identical-location photoelectron microspectroscopy, Electrochem. Comm., 69, 50, 10.1016/j.elecom.2016.05.018 Henke, 1993, X-ray interactions: photoabsorption, scattering, transmission, and reflection at E=50–30,000 eV, Z=1–92, At. Data Nucl. Data Tables, 54, 181, 10.1006/adnd.1993.1013 Bozzini, 2017, Electrodeposition of Mn-Co/polypyrrole nanocomposites: an electrochemical and in situ soft-X ray microspectroscopic investigation, Polymers, 10.3390/polym9010017 Gianoncelli, 2013, Fabrication and testing of an electrochemical microcell for in situ soft X-ray microspectroscopy measurements, J. Phys. Conf. Ser., 425, 182010, 10.1088/1742-6596/425/18/182010 Despic, 1983, Deposition and dissolution of metals and alloys. part B: mechanisms, kinetics, texture, and morphology, 7, 451 Borckris, 1993, 756 Queiroz, 2013, Electrocatalytic activity and stability of Co and Mn-based oxides for the oxygen reduction reaction in alkaline electrolyte, J. Electroanal. Chem., 707, 142, 10.1016/j.jelechem.2013.08.039 Borthen, 1995, X-ray-refiectivity fine structure and EXAFS, Phys. Rev. B, 52, 3017, 10.1103/PhysRevB.52.3017 Sun, 2015, Exact transition probabilities for a linear sweep through a Kramers-Kronig resonance, J. Phys. A Math. Theor., 48, 505202, 10.1088/1751-8113/48/50/505202 I. Sgura, A.S. Lawless, B. Bozzini, Parameter estimation for a morphochemical reaction-diffusion model of electrochemical pattern formation. Submitted.