On the crystal ground state in the Schrödinger–Poisson model with point ions

Pleiades Publishing Ltd - Tập 99 - Trang 886-894 - 2016
A. I. Komech1,2
1Faculty of Mathematics, Vienna University, Vienna, Austria
2Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia

Tóm tắt

A space-periodic ground state is shown to exist for lattices of point ions in R3 coupled to the Schrödinger and scalar fields. The coupling requires renormalization due to the singularity of the Coulomb self-action. The ground state is constructed by minimizing the renormalized energy per cell. This energy is bounded from below when the charge of each ion is positive. The elementary cell is necessarily neutral.

Tài liệu tham khảo

M. Born and J. R. Oppenheimer, “ZurQuantentheorie der Molekeln,” Annalen der Physik 389 (20), 457–484 (1927). I.M. Lifshits, M. Ya. Azbel, and M. I. Kaganov, Electron Theory of Metals (Consultants Bureau, New York, 1973). R. E. Peierls, Quantum Theory of Solids (Clarendon Press, Oxford, 2001). X. Blanc, C. Le Bris, and P.-L. Lions, “A definition of the ground state energy for systems composed of infinitely many particles,” Comm. Partial Diff. Eq. 28 (1–2), 439–475 (2003). E. H. Lieb and B. Simon, “The Hartree–Fock theory for Coulomb systems,” Comm. Math. Phys. 53, 185–194 (1977). P.-L. Lions, “Some remarks on Hartree equation,” Nonlinear Anal., Theory Methods Appl. 5, 1245–1256 (1981). P.-L. Lions, “Solutions of Hartree–Fock equations for Coulomb systems,” Commun. Math. Phys. 109, 33–97 (1987). F. Nier, “Schrödinger–Poisson systems in dimension d = 3: The whole-space case,” Proc. R. Soc. Edinb., Sec. A 123 (6), 1179–1201 (1993). E. Cancès and C. Le Bris, “On the time-dependent Hartree–Fock equations coupled with a classical nuclear dynamics,” Math. ModelsMethods Appl. Sci. 9 (7), 963–990 (1999). F. J. Dyson and A. Lenard, “Stability of matter, I,” J.Math. Phys. 8, 423–43 (1967). E. H. Lieb, The Stability of Matter: From Atoms to Stars. Selecta of Elliott H. Lieb (Springer, Berlin, 2005). E. H. Lieb and J. L. Lebowitz, “The constitution of matter: existence of thermodynamics for systems composed of electrons and nuclei,” Adv. Math. 9 (3), 316–398 (1972). E. H. Lieb and R. Seiringer, The Stability of Matter in QuantumMechanics (Cambridge University Press, Cambridge, 2009). M. C. Lemm, Stability of Matter, Ph. D. dissertation (LMU,ss, The thermodynamic limit for matMÜnchen, 2010). E. H. Lieb and M. Loter “interacting with Coulomb forces and with the quantized electromagnetic field: I. The lower bound,” Comm. Math. Phys. 258, 675–695 (2005). X. Blanc, C. Le Bris, and P.-L. Lions, “The energy of some microscopic stochastic lattices,” Arch. Ration. Mech. Anal. 184 (2), 303–339 (2007). L. Catto, C. Le Bris, and P.-L. Lions, “Thermodynamic limit for Thomas–Fermi type models,” C. R. Acad. Sci., Paris, Sér. I 322 (4), 357–364 (1996). L. Catto, C. Le Bris, and P.-L. Lions, The Mathematical Theory of Thermodynamic Limits: Thomas–Fermi Type Models (Clarendon Press, Oxford, 1998). L. Catto, C. Le Bris, and P.-L. Lions, “On the thermodynamic limit for Hartree–Fock type models,” Ann. Inst. Henri Poincaré, Anal. Non Linéaire 18 (6), 687–760 (2001). L. Catto, C. Le Bris, and P.-L. Lions, “On some periodic Hartree-type models for crystals,” Ann. Inst. Henri Poincaré, Anal. Non Linéaire 19 (2), 143–190 (2002). C. Le Bris and P.-L. Lions, “From atoms to crystals: A mathematical journey,” Bull. Am. Math. Soc., New Ser. 42 (3), 291–363 (2005). A. Giuliani and J. L. Lebowitz and E. H. Lieb, “Periodic minimizers in 1D local mean field theory,” Comm. Math. Phys. 286, 163–177 (2009). A. I. Komech, “On crystal ground state in the Schrödinger–Poisson model,” SIAM J. Math. Anal. 47 (2), 1001–1021 (2015). R. A. Adams, J. J. Fournier, and J. F. John, Sobolev Spaces (Elsevier–Academic Press, Amsterdam, 2003). S. L. Sobolev, Some Applications of Functional Analysis in Mathematical Physics (AMS, Providence, RI, 1991).