Analysis of enhancement in gamma ray shielding proficiency by adding WO3 in Al2O3-PbO-B2O3 glasses using Phy-X/PSD
Tài liệu tham khảo
Çağlar, 2019, Na2Si3O7/BaO composites for the gamma-ray shielding in medical applications: experimental, MCNP5, and WinXCom studies, Prog Nucl Energy, 117, 103119, 10.1016/j.pnucene.2019.103119
Lakshminarayana, 2018, Vibrational, thermal features, and photon attenuation coefficients evaluation for TeO2-B2O3-BaO-ZnO-Na2O-Er2O3-Pr6O11 glasses as gamma rays shielding materials, J Non-Cryst Solids, 481, 568, 10.1016/j.jnoncrysol.2017.11.049
Al-Hadeethi, 2019, Analysis of borosilicate glasses doped with heavy metal oxides for gamma radiation shielding application using Geant4 simulation code, Ceram Int, 45, 24858, 10.1016/j.ceramint.2019.08.234
Sayyed, 2020, Bi2O3-B2O3-ZnO-BaO-Li2O glass system for gamma ray shielding Applications, Optik - Int J Light Elect Optic, 201, 163525, 10.1016/j.ijleo.2019.163525
Issa, 2019, Effect of Bi2O3 content on mechanical and nuclear radiation shielding properties of Bi2O3-MoO3-B2O3-SiO2-Na2O-Fe2O3 glass system, Res Phys, 13, 102165
Elbashir, 2019, Characterization of Bi2O3-ZnO-B2O3 and TeO2-ZnO-CdO-Li2O-V2O5 glass systems for shielding gamma radiation using MCNP5 and Geant4 codes, J Phys Chem Solid, 126, 112, 10.1016/j.jpcs.2018.10.034
Lakshminarayana, 2018, Exploration of gamma radiation shielding features for titanate bismuth borotellurite glasses using relevant software program and Monte Carlo simulation code, J NonCryst Solids, 481, 65, 10.1016/j.jnoncrysol.2017.10.027
Singh, 2015, Shielding efficiency of lead borate and nickel borate glasses for gamma rays and neutrons, Glass Phys Chem, 41, 276, 10.1134/S1087659615030177
Aşkın, 2020, Evaluation of the radiation shielding capabilities of the Na2B4O7–SiO2–MoO3-Dy2O3 glass quaternary using Geant4 simulation code and Phy-X/PSD database, Ceram Int, 46, 9096, 10.1016/j.ceramint.2019.12.158
Shams, 2017, Effect of ErCl3 in gamma and neutron parameters for different concentration of ErCl3-SiO2 (EDFA) for the signal protection from nuclear radiation, J Alloys Compd, 698, 234, 10.1016/j.jallcom.2016.12.176
Singh, 2014, Comparative study of gamma ray shielding and some properties of PbO-SiO2-Al2O3 and Bi2O3-SiO2-Al2O3 glass systems, Radiat Phys Chem, 96, 153, 10.1016/j.radphyschem.2013.09.015
Ali, 2018, Optical and electrical properties of Nd3+Doped TeBiY borate glasses, Silicon, 10, 1503, 10.1007/s12633-017-9633-y
Gaikwad, 2018, Gamma ray shielding properties of TeO2-ZnF2-As2O3-Sm2O3 glasses, J Alloys Compd, 765, 451, 10.1016/j.jallcom.2018.06.240
Kumar, 2017, Gamma ray shielding properties of PbO-Li2O-B2O3 glasses, Radiat Phys Chem, 136, 50, 10.1016/j.radphyschem.2017.03.023
Kebaili, 2020, Gamma-ray shielding properties of lead borovanadate glasses, Ceram Int, 46, 19624, 10.1016/j.ceramint.2020.05.032
Sayyed, 2019, Physical, structural, optical and gamma radiation shielding properties of borate glasses containing heavy metals (Bi2O3/MoO3), J Non Solids, 507, 30, 10.1016/j.jnoncrysol.2018.12.010
Singh, 2013, Conversion of covalent to ionic behavior of Fe2O3–CeO2–PbO–B2O3 glasses for ionic and photonic application, J Alloys Compd, 546, 224, 10.1016/j.jallcom.2012.08.105
Pal Singh, 2011, Spectroscopic study of ZnO doped CeO2–PbO–B2O3 glasses, Physica B, 406, 3402, 10.1016/j.physb.2011.06.007
Saritha, 2008, Effect of Bi2O3 on physical, optical and structural studies of ZnO–Bi2O3–B2O3 glasses, J Non-Cryst Solids, 354, 5573, 10.1016/j.jnoncrysol.2008.09.017
Ganguli, 1999, Structural role of PbO in Li2O–PbO–B2O3 glasses, J Solid State Chem, 145, 65, 10.1006/jssc.1999.8221
Pisarski, 2005, Structural role of rare earth ions in lead borate glasses evidenced by infrared spectroscopy: BO3↔ BO4 conversion, J Mol Struct, 744, 515, 10.1016/j.molstruc.2005.01.022
Mostafa, 2017, Gamma ray shielding properties of PbO-B2O3-P2O5 doped with WO3, J Alloys Compd, 708, 294, 10.1016/j.jallcom.2017.02.303
Kaundal, 2010, Investigation of structural properties of lead strontium borate glasses for gamma-ray shielding applications, J Phys Chem Solid, 71, 1191, 10.1016/j.jpcs.2010.04.016
El-Egili, 2003, Structure and some physical properties of PbO–P2O5 glasses, Phys B Condens Matter, 339, 237, 10.1016/j.physb.2003.07.005
Srinivasa Reddy, 2007, Structural influence of aluminium, gallium and indium metal oxides by means of dielectric and spectroscopic properties of CaO–Sb2O3–B2O3 glass system, J Alloys Compd, 438, 41, 10.1016/j.jallcom.2006.08.054
Rutz, 1990, Properties of Yttria-Aluminoborate glasses, J Am Ceram Soc, 73, 1788, 10.1111/j.1151-2916.1990.tb09836.x
Shams, 2020, Experimental investigations on elastic and radiation shielding parameters of WO3-B2O3-TeO2 glasses, J Non-Cryst Solids, 544, 120207, 10.1016/j.jnoncrysol.2020.120207
El-Mallawany, 1996, Dielectric properties and polarizability of molybdenum tellurite glasses, JMaterSci, 31, 6339
Qiu, 1997, Synthesis and electrical properties of Fe2O3-MoO3-TeO2 glasses, MaterChemPhys, 51, 233
Pisarska, 2008, Up-converted luminescence in Yb–Tm co-doped lead fluoroborate glasses, J Alloys Compd, 451, 226, 10.1016/j.jallcom.2007.04.168
Singh, 2011, Role of WO3 in structural and optical properties of WO3–Al2O3–PbO–B2O3 glasses, Physica, B406, 4652, 10.1016/j.physb.2011.09.052
Dong, 2017, Shielding properties of 80TeO2–5TiO2–(15−x) WO3–xAnOm glasses using WinXCom and MCNP5 code, Radiat Phys Chem, 141, 172, 10.1016/j.radphyschem.2017.07.006
Sayyed, 2018, Radiation shielding properties of pentaternary borate glasses using MCNPX code, J Phys Chem Solid, 121, 17, 10.1016/j.jpcs.2018.05.009
Al-Hadeethi, 2020, A comprehensive study on the effect of TeO2 on the radiation shielding properties of TeO2–B2O3–Bi2O3–LiF–SrCl2 glass system using Phy-X/PSD software, Ceram Int, 46, 6136, 10.1016/j.ceramint.2019.11.078
Şakar, 2020, Phy-X/PSD: development of a user friendly online software for calculation of parameters relevant to radiation shielding and dosimetry, Rad Phys Chem, 166, 108496, 10.1016/j.radphyschem.2019.108496
Yalcin, 2019, Radiation shielding properties of Cerium oxide and Erbium oxide doped obsidian glass, Radiat Phys Chem, 160, 83, 10.1016/j.radphyschem.2019.03.024
Tekin, 2020, OzgeKilicoglu, Evellyn Santos Magalhães, Shams AM Issa, and Guilherme Rodrigues da Silva Mattos, Newly developed tellurium oxide glasses for nuclear shielding applications: an extended investigation, J Non-Cryst Solids, 528, 119763, 10.1016/j.jnoncrysol.2019.119763
Shams, 2019, Comparison study of photon attenuation characteristics of Poly vinyl alcohol (PVA) doped with Pb (NO3) 2 by MCNP5 code, XCOM and experimental results, Prog Nucl Energy, 111, 15, 10.1016/j.pnucene.2018.10.018
Shams, 2017, Study of gamma radiation shielding properties of ZnO –TeO2 glasses, Bull Mater Sci, 40, 841, 10.1007/s12034-017-1425-x
Singh, 2008, Gamma-ray shielding and structural properties of PbO–SiO2 glasses, Nucl Instrum Methods Phys Res B, 266, 944, 10.1016/j.nimb.2008.02.004
Issa, 2019, Radiation shielding features using MCNPX code and mechanical properties of the PbO-Na2O-B2O3-CaO-Al2O3-SiO2 glass systems, Composites Part B, 167, 231, 10.1016/j.compositesb.2018.12.029
Obaid, 2018, Determination of gamma ray shielding parameters of rocks and concrete, Radiat Phys Chem, 144, 356, 10.1016/j.radphyschem.2017.09.022
Agara, 2019, Experimental investigation of photon attenuation behaviors for concretes including natural perlite mineral, Res Phys, 12, 237
Gerward, 2004, Win XCom-a program for calculating X-ray attenuation coefficients, Radiat Phys Chem, 71, 653, 10.1016/j.radphyschem.2004.04.040
Bashter, 1997, Calculation of radiation attenuation coefficients for shielding concretes, Ann Nucl Energy, 24, 1389, 10.1016/S0306-4549(97)00003-0
Issa, 2016, Effective atomic number and mass attenuation coefficient of PbO–BaO– B2O3 glass system, Radiat Phys Chem, 120, 33, 10.1016/j.radphyschem.2015.11.025
Singh, 2002, Gamma-ray attenuation coefficients in bismuth borate glasses, Nucl Instrum Methods PhysRes B, 194, 1, 10.1016/S0168-583X(02)00498-6
SCHOTT
Un, 2013, Determination of mass attenuation coefficients, effective atomic numbers and effective electron numbers for heavy-weight and normal-weight concretes, Appl Radiat Isot, 80, 73, 10.1016/j.apradiso.2013.06.015
Sharma, 2019, Simulation of shielding parameters for TeO2-WO3-GeO2 glasses using FLUKA code, Res Phys, 13, 102199
I Sayyed, 2017, Variation of energy absorption and exposure buildup factors with incident photon energy and penetration depth for boro-tellurite (B2O3-TeO2) glasses, Radiat Phys Chem, 130, 335, 10.1016/j.radphyschem.2016.09.019
P Singh, 2014, Evaluation of gamma-ray exposure buildup factors and neutron shielding for bismuth borosilicate glasses, Radiat Phys Chem, 98, 14, 10.1016/j.radphyschem.2013.12.029
Uosif, 2020, Structural, mechanical and radiation shielding properties of newly developed tungsten lithium borate glasses: an experimental study, J Non-Cryst Solids, 532, 119882, 10.1016/j.jnoncrysol.2019.119882
Gaikwad, 2018, Comparative study of gamma ray shielding competence of WO3-TeO2-PbO glass system to different glasses and concretes, Mater Chem Phys, 213, 508, 10.1016/j.matchemphys.2018.04.019
Al-Buriahi, 2020, Effect of chromium oxide on the physical, optical, and radiation shielding properties of lead sodium borate glasses, J Non-Cryst Solids, 544, 120171, 10.1016/j.jnoncrysol.2020.120171
Sayyed, 2018, Investigation on gamma and neutron radiation shielding parameters for BaO/SrO‒Bi2O3‒B2O3 glasses, Radiat Phys Chem, 145, 26, 10.1016/j.radphyschem.2017.12.010
Sayyed, 2018, Comparative investigations of gamma and neutron radiation shielding parameters for different borate and tellurite glass systems using WinXCom program and MCNPX code, Mater Chem Phys, 215, 183, 10.1016/j.matchemphys.2018.04.106
El Abd, 2017, A simple method for determining the effective removal cross section for fast neutrons, J Radiat Nucl Appl, 2, 53, 10.18576/jrna/020203
Lakshminarayana, 2020, Estimation of gamma-rays, and fast and the thermal neutrons attenuation characteristics for bismuth tellurite and bismuth boro-tellurite glass systems, J Mater Sci, 55, 5750, 10.1007/s10853-020-04446-4
Lakshminarayana, 2020, B2O3–Bi2O3–TeO2–BaO and TeO2–Bi2O3–BaO glass systems: a comparative assessment of gamma-ray and fast and thermal neutron attenuation aspects, Appl Phys A, 126, 1, 10.1007/s00339-020-3372-4
Sears, 1992, Neutron scattering lengths and cross sections, Neutron News, 3, 29, 10.1080/10448639208218770
Abdel-Baki, 2012, One-photon band gap engineering of borate glass doped with ZnO for photonics applications, J Appl Phys, 111, 10.1063/1.3698623
Gaafar, 2020, Role of neodymium on some acoustic and physical properties of Bi2O3-B2O3-SrO glasses, J Mater Res Tech, 9, 7252, 10.1016/j.jmrt.2020.04.086
El-Mallawany, 2006, 2006, Ultrasonic studies of (TeO2) 50–(V2O5) 50− x (TiO2) x glasses, Mater Chem Phys, 95, 321, 10.1016/j.matchemphys.2005.06.025
H Alazoumi, 2017, Synthesis and elastic properties of ternary ZnO-PbO-TeO2 glasses, Chalcogenide Lett, 14, 303
Rao, 2001, Investigation of lithium chloride–lithium borate–tellurium dioxide glasses: an example of complex anionic speciation, Phys Chem glasses, 42, 255
Yasser, 2009, Saddeek, Structural and acoustical studies of lead sodium borate glasses, J Alloys Compd, 467, 14, 10.1016/j.jallcom.2007.11.126
Sour, 2017, Ultrasonic velocities, elastic modulus and hardness of ternary Sb-V2O5-TeO2 glasses, J Non-Cryst Solids, 470, 112, 10.1016/j.jnoncrysol.2017.05.006
Bhuvaneswar, 2005, Synthesis and structural analysis of lithium nickel vanadate, Mater Chem Phys, 91, 94, 10.1016/j.matchemphys.2004.10.054
Singh, 2020, Comparison of structural, physical and optical properties of Na2O-B2O3 and Li2O-B2O3 glasses to find an advantageous host for CeO2 based optical and photonic applications, J Non-Cryst Solids, 546, 120268, 10.1016/j.jnoncrysol.2020.120268
Makishima, 1973, Direct calculation of Young's modulus of glass, J Non-Cryst Solids, 12, 35, 10.1016/0022-3093(73)90053-7
Yamane, 1974, Vicker's hardness of glass, J Non-Cryst Solids, 15, 153, 10.1016/0022-3093(74)90044-1