Vật liệu từ cellulose vi khuẩn và thiết bị y tế: tình trạng hiện tại và triển vọng

Springer Science and Business Media LLC - Tập 91 - Trang 1277-1286 - 2011
Nathan Petersen1, Paul Gatenholm2,3,4
1University of Virginia School of Medicine, Charlottesville, USA
2Department of Chemical and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
3School of Biomedical Engineering and Sciences, Virginia Tech-Wake Forest University, Blacksburg, USA
4BC Genesis, 2000 Kraft Dr, Corporate Research Center at Virginia Tech, Blacksburg, USA

Tóm tắt

Cellulose vi khuẩn (BC) là một vật liệu độc đáo và đầy hứa hẹn để sử dụng làm implant và giá đỡ trong kỹ thuật mô. Nó được cấu tạo từ một mạng lưới sợi cellulose tinh khiết do vi khuẩn sản xuất. Nó nổi bật với độ bền của mình và khả năng được thiết kế về mặt cấu trúc và hóa học ở cấp độ nano, micro và vĩ mô. Nội dung nước cao và độ tinh khiết của nó làm cho vật liệu này tương thích sinh học cho nhiều ứng dụng y tế. Tính tương thích sinh học, độ bền cơ học, khả năng kiểm soát hóa học và hình thái của nó khiến BC trở thành một lựa chọn tự nhiên để sử dụng trong cơ thể trong các thiết bị y sinh với những ứng dụng rộng rãi hơn những gì đã được thực hiện. Bài báo này tổng quan về tình trạng hiện tại của việc hiểu biết về cellulose vi khuẩn, các phương pháp đã biết để kiểm soát cấu trúc vật lý và hóa học của nó (ví dụ: độ xốp, định hướng sợi, v.v.), các ứng dụng y sinh mà nó hiện đang được sử dụng hoặc được nghiên cứu cho việc sử dụng, những thách thức chưa được giải quyết, và các khả năng tương lai cho BC.

Từ khóa

#cellulose vi khuẩn #thiết bị y tế #tương thích sinh học #kỹ thuật mô #ứng dụng y sinh

Tài liệu tham khảo

Azuma C, Yasuda K, Tanabe Y, Taniguro H, Kanaya F, Nakayama A, Chen YM, Gong JP, Osada Y (2007) Biodegradation of high-toughness double network hydrogels as potential materials for artificial cartilage. J Biomed Mater Res, Part A 81:373–380. doi:https://doi.org/10.1002/jbm.a.31043 Bäckdahl H (2008) Engineering the shape of bacterial cellulose and its use as blood vessel replacement [PhD Thesis]. Department of Chemical and Biological Engineering, Chalmers University of Technology, Göteborg, Sweden. Bäckdahl H, Helenius G, Bodin A, Nannmark U, Johansson BR, Risberg B, Gatenholm P (2006) Mechanical properties of bacterial cellulose and interactions with smooth muscle cells. Biomaterials 27:2141–2149. doi:https://doi.org/10.1016/j.biomaterials.2005.10.026 Bäckdahl H, Esguerra M, Delbro D, Risberg B, Gatenholm P (2008a) Engineering microporosity in bacterial cellulose scaffolds. J Tissue Eng Regen Med 2:320–330. doi:https://doi.org/10.1002/term.97 Bäckdahl H, Risberg B, Gatenholm P (2008a) Observations on bacterial cellulose tube formation and ways to introduce microporosity. Dissertation, Chalmers University of Technology, Göteborg, Sweden Barud HS, Barrios C, Regiani T, Marques RFC, Verelst M, Dexpert-Ghys J, Messaddeq Y, Ribeiro SJL (2008a) Self-supported silver nanoparticles containing bacterial cellulose membranes. Mater Sci Eng C 28:515–518. doi:https://doi.org/10.1016/j.msec.2007.05.001 Barud HS, de Araujo AM, Santos DB, de Assuncao RMN, Meireles CS, Cerqueira DA, Rodrigues G, Ribeiro CA, Messaddeq Y, Ribeiro SJL (2008b) Thermal behavior of cellulose acetate produced from homogeneous acetylation of bacterial cellulose. Thermochim Acta 471:61–69. doi:https://doi.org/10.1016/j.tca.2008.02.009 Bodin A. (2007) Biomedical applications of bacterial cellulose: fermentation, morphology and surface properties. Dissertation, Department of Chemical and Biological Engineering, Chalmers University of Technology, Göteborg, Sweden Bodin A, Ahrenstedt L (2007) Modification of nanocellulose with a xyloglucan–RGD conjugate enhances adhesion and proliferation of endothelial cells: implications for tissue engineering. Biomacromolecules 8:3697–3704. doi:https://doi.org/10.1021/bm070343q Bodin A, Bäckdahl H, Fink H, Gustaffson L, Risberg B, Gatenholm P (2007a) Influence of cultivation conditions on mechanical and morphological properties of bacterial cellulose tubes. Biotechnol Bioeng 97:425–434. doi:https://doi.org/10.1002/bit.21314 Bodin A, Concaro S, Brittberg M, Gatenholm P (2007b) Bacterial cellulose as a potential meniscus implant. J Tissue Eng Regener Med 1:406–408. doi:https://doi.org/10.1002/term.51 Bodin A, Bharadwaj S, Wu S, Gatenholm P, Atala A, Zhang Y (2010) Tissue-engineered conduit using urine-derived stem cells seeded bacterial cellulose polymer in urinary reconstruction and diversion. Biomaterials 31:8889–8901. doi:https://doi.org/10.1016/j.biomaterials.2010.07.108 Bowry SK, Rintelen TH (1998) Synthetically modified cellulose (SMC): a cellulosic hemodialysis membrane with minimized complement activation. ASAIO J 44:M579–M583. doi:https://doi.org/10.1097/00002480-199809000-00054 Cunha AG, Freire CSR, Silvestre AJD, Neto CP, Gandini A, Orblin E, Fardim P (2007) Highly hydrophobic biopolymers prepared by the surface pentafluorobenzoylation of cellulose substrates. Biomacromolecules 8:1347–1352. doi:https://doi.org/10.1021/bm0700136 Czaja W, Romanovicz D, Brown RM (2004) Structural investigations of microbial cellulose produced in stationary and agitated culture. Cellulose 11:403–411. doi:https://doi.org/10.1023/B:CELL.0000046412.11983.61 Czaja W, Krystynowicz A, Bielecki S, Brown RM (2006) Microbial cellulose—the natural power to heal wounds. Biomaterials 27:145–151. doi:https://doi.org/10.1016/j.biomaterials.2005.07.035 Czaja WK, Young DJ, Kawecki M, Browm RM (2007) The future prospects of microbial cellulose in biomedical applications. Biomacromolecules 8:1–12. doi:https://doi.org/10.1021/bm060620d Ducheyne P, Qiu Q (1999) Bioactive ceramics: the effect of surface reactivity on bone formation and bone cell function. Biomaterials 20:2287–2303. doi:https://doi.org/10.1016/S0142-9612(99)00181-7 Dulgar-Tulloch AJ, Bizios R, Siegel RW (2009) Human mesenchymal stem cell adhesion and proliferation in response to ceramic chemistry and nanoscale topography. J Biomed Mater Res, Part A 90:586–594. doi:https://doi.org/10.1002/jbm.a.32116 Esguerra M, Fink H, Laschke MW, Delbro D, Jeppsson A, Gatenholm P, Menger MG, Risberg B (2010) Intravital fluorescent microscopic evaluation of bacterial cellulose as scaffold for vascular grafts. J Biomed Mater Res, Part A 93A:140–149. doi:https://doi.org/10.1002/jbm.a.32516 Falcao SC, Coelho ARD, Neto JE (2008a) Biomechanical evaluation of microbial cellulose (Zoogloea sp.) and expanded polytetrafluoroethylene membranes as implants in repair of produced abdominal wall defects in rats. Acta Cir Bras 23:184–191. doi:https://doi.org/10.1590/S0102-86502008000200012 Falcao SC, Neto JE, Coelho AR (2008b) Incorporation by host tissue of two biomaterials used as repair of defects produced in abdominal wall of rats. Acta Cir Bras 23:78–83. doi:https://doi.org/10.1590/S0102-86502008000100013 Fang B, Wan YZ, Tang TT, Gao C, Dai KR (2009) Proliferation and osteoblastic differentiation of human bone marrow stromal cells on hydroxyapatite/bacterial cellulose nanocomposite scaffolds. Tissue Eng Part A 15:1091–1098. doi:https://doi.org/10.1089/ten.tea.2008.0110 Fink H, Hong J, Drotz K, Risberg B, Sanchez J, Sellborn A (2011) An in vitro study of blood compatibility of vascular grafts made of bacterial cellulose in comparison with conventionally-used graft materials. J Biomed Mater Res, Part A 97A:52–58. doi:https://doi.org/10.1002/jbm.a.33031 Fontana JD, Desouza AM, Fontana CK, Torriani IL, Moreschi JC, Gallotti BJ, Desouza SJ, Narcisco GP, Bichara JA, Farah LF (1990) Acetobacter cellulose pellicle as a temporary skin substitute. Appl Biochem Biotechnol 24–25:253–264. doi:https://doi.org/10.1007/BF02920250 Garrett RH, Grisham CH (2005) Biochemistry, 3rd edn. Brooks/Cole, Belmont, pp 223–224 Gatenholm P, Klemm D (2010) Bacterial nanocellulose as a renewable material for biomedical applications. MRS Bull 35:208–213. doi:https://doi.org/10.1557/mrs2010.653 Habibovic P, Yuan HP, van der Valk CM, Meijer G, van Blitterswijk CA, de Groot K (2005) 3D microenvironment as essential element for osteoinduction by biomaterials. Biomaterials 26:3565–3575. doi:https://doi.org/10.1016/j.biomaterials.2004.09.056 Harris J, Serafica G, Damien C, Nonnenmann H (2010) Oxidized microbial cellulose and use thereof. US Patent 7,709,631 Helenius G, Bäckdahl H, Bodin A, Nannmark U, Gatenholm P, Risberg B (2006) In vivo biocompatibility of bacterial cellulose. J Biomed Mater Res A 76A:431–438. doi:https://doi.org/10.1002/jbm.a.30570 Hoenich N (2006) Cellulose for medical applications: past, present, and future. BioResources 1:270–280 Hutchens SA, Benson RS, Evans BR, O’Neill HM, Rawn CJ (2006) Biomimetic synthesis of calcium-deficient hydroxyapatite in a natural hydrogel. Biomaterials 27:4661–4670. doi:https://doi.org/10.1016/j.biomaterials.2006.04.032 Hutmacher DW, Schantz JT, Lam CXF, Tan KC, Lim TC (2007) State of the art and future directions of scaffold-based bone engineering from a biomaterials perspective. J Tissue Eng Regen Med 1:245–260. doi:https://doi.org/10.1002/term.24 Izeboud E (1992) Biocompatibility of cellulose and cellulose derivatives. Papier 46:722–725 Jung JY, Khan T, Park JK, Chang HN (2007) Production of bacterial cellulose by Gluconacetobacter hansenii using a novel bioreactor equipped with a spin filter. Korean J Chem Eng 24:265–271. doi:https://doi.org/10.1007/s11814-007-5058-4 Jung H, Yoon HG, Park WJ, Choi C, Wilson DB, Shin DH, Kim YJ (2008) Effect of sodium hydroxide treatment of bacterial cellulose on cellulase activity. Cellulose 15:465–471. doi:https://doi.org/10.1007/s10570-007-9190-4 Kalaskar DM, Gough JE, Ulijn RV, Sampson WW, Scurr DJ, Rutten FJ, Alexander MR, Merry CLR, Eichhorn SJ (2008) Controlling cell morphology on amino acid-modified cellulose. Soft Matter 4:1059–1065. doi:https://doi.org/10.1039/B719706N Kim IY, Seo SJ, Moon HS, Yoo MK, Park IY, Kim BC, Cho CS (2008) Chitosan and its derivatives for tissue engineering applications. Biotechnol Adv 26:1–21. doi:https://doi.org/10.1016/j.biotechadv.2007.07.009 Klechkovskaya VV, Volkov VV, Shtykova EV, Arkharova NA, Baklagina YG, Khripunov AK, Smyslov RY, Borovikova LN, Tkachenko AA (2008) Network model of Acetobacter xylinum cellulose intercalated by drug nanoparticles. In: Giersig M, Khomutov GB (eds) Nanomaterials for Application in Medicine and Biology. NATO Science for Peace and Security Series B: Physics and Biophysics. Springer, Netherlands, pp 165–177. doi:https://doi.org/10.1007/978-1-4020-6829-4_14 Klemm D, Schumann D, Udhardt U, Marsch S (2001) Bacterial synthesized cellulose—artificial blood vessels for microsurgery. Prog Polym Sci 26:1561–1603. doi:https://doi.org/10.1016/S0079-6700(01)00021-1 Klemm D, Heublein B, Fink HP, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 44:3358–3393. doi:https://doi.org/10.1002/anie.200460587 Klemm D, Schumann D, Kramer F, Heßler N, Hornung M, Schmauder HP, Marsch S (2006) Nanocelluloses as innovative polymers in research and application. Adv Polym Sci 205:49–96. doi:https://doi.org/10.1007/12_097 Kondo T, Nojiri M, Hishikawa Y, Togawa E, Romanovicz D, Brown RM (2002) Biodirected epitaxial nanodeposition of polymers on oriented macromolecular templates. Proc Natl Acad Sci USA 99:14008–14013. doi:https://doi.org/10.1073/pnas.212238399 Kramer F, Klemm D, Schumann D, Heßler N, Wesarg F, Fried W, Stadermann D (2006) Nanocellulose polymer composites as innovative pool for (bio)material development. Macromol Symp 244:136–148. doi:https://doi.org/10.1002/masy.200651213 Kumar V (2004) Regenerated cellulose and oxidized cellulose membranes as potential biodegradable platforms for drug delivery and tissue engineering. US Patent 6,800,753 Kumar V, Dang Y (2010) Biodegradable oxidized cellulose esters. US Patent 7,662,801 Kumar V, Dong Y (2009) Biodegradable oxidized cellulose esters. US Patent 7,595,392 Lau RKL, Kwok ACM, Chan WK, Zhang TY, Wong JTY (2007) Mechanical characterization of cellulosic thecal plates in dinoflagellates by nanoindentation. J Nanosci Nanotechnol 7:452–457. doi:https://doi.org/10.1166/jnn.2007.110 Laurence S, Bareille R, Baquey C, Fricain JC (2005) Development of a resorbable macroporous cellulosic material used as hemostatic in an osseous environment. J Biomed Mater Res, Part A 73:422–429. doi:https://doi.org/10.1002/jbm.a.30280 Levinson D, Glonek T (2008) Microbial cellulose contact lens. US Patent 7,832,857 Li J, Wan YZ, Li LF, Liang H, Wang JH (2009) Preparation and characterization of 2,3-dialdehyde bacterial cellulose for potential biodegradable tissue engineering scaffolds. Mater Sci Eng C 29:1635–1642. doi:https://doi.org/10.1016/j.msec.2009.01.006 Martson M, Viljanto J, Hurme T, Saukko P (1998a) Biocompatibility of cellulose sponge with bone. Eur Surg Res 30:426–432. doi:https://doi.org/10.1159/000008609 Martson M, Viljanto J, Laippala P, Saukko P (1998b) Connective tissue formation in subcutaneous cellulose sponge implants in the rat—the effect of the size and cellulose content of the implant. Eur Surg Res 30:419–425. doi:https://doi.org/10.1159/000008608 Martson M, Viljanto J, Hurme T, Laippala P, Saukko P (1999) Is cellulose sponge degradable or stable as implantation material? An in vivo subcutaneous study in the rat. Biomaterials 20:1989–1995. doi:https://doi.org/10.1016/S0142-9612(99)00094-0 Millon LE, Wan WK (2006) The polyvinyl alcohol-bacterial cellulose system as a new nanocomposite for biomedical applications. J Biomed Mater Res, Part B 79:245–253. doi:https://doi.org/10.1002/jbm.b.30535 Miyamoto T, Takahashi S, Ito H, Inagaki H, Noishiki Y (1989) Tissue biocompatibility of cellulose and its derivatives. J Biomed Mater Res 23:125–133. doi:https://doi.org/10.1002/jbm.820230110 Nguyen VT, Gidley MJ, Dykes GA (2008) Potential of a nisin-containing bacterial cellulose film to inhibit Listeria monocytogenes on processed meats. Food Microbiol 25:471–478. doi:https://doi.org/10.1016/j.fm.2008.01.004 Oshima T, Kondo K, Ohto K, Inoue K, Baba Y (2008) Preparation of phosphorylated bacterial cellulose as an adsorbent for metal ions. Reactive Funct Polym 68:376–383. doi:https://doi.org/10.1016/j.reactfunctpolym.2007.07.046 Park HO, Bang YB, Joung HJ, Kim BC, Kim HR (2004) Lactobacillus KCTC 0774BP and acetobacter KCTC 0773BP for treatment or prevention of obesity and diabetes mellitus. US Patent 6,808,703 Putra A, Kakugo A, Furukawa H, Gong JP, Osada Y, Uemura T, Yamamoto M (2008a) Production of bacterial cellulose with well oriented fibril on PDMS substrate. Polym J 40:137–142. doi:https://doi.org/10.1295/polymj.PJ2007180 Putra A, Kakugo A, Furukawa H, Gong JP, Osada Y (2008b) Tubular bacterial cellulose gel with oriented fibrils on the curved surface. Polymer 49:1885–1891. doi:https://doi.org/10.1016/j.polymer.2008.02.022 Rambo CR, Recouvreux DOS, Carminatti CA, Pitlovanciv AK, Antonio RV, Porto LM (2008) Template assisted synthesis of porous nanofibrous cellulose membranes for tissue engineering. Mater Sci Eng C 28:549–554. doi:https://doi.org/10.1016/j.msec.2007.11.011 Roman M, Winter WT (2004) Effect of sulfate groups from sulfuric acid hydrolysis on the thermal degradation behavior of bacterial cellulose. Biomacromolecules 5:1671–1677. doi:https://doi.org/10.1021/bm034519+ Ross P, Mayer R, Benziman M (1991) Cellulose biosynthesis and function in bacteria. Microbiol Rev 55:35–58 Saferstein L, Serafica G (2010) Cellulose oxidation by nitrogen dioxide in a perfluorinated tertiar amine solvent. US Patent 7,645,874 Sano MB, Rojas AD, Gatenholm P, Davalos RV (2010) Electromagnetically controlled biological assembly of aligned bacterial cellulose nanofibers. Ann Biomed Eng 38:2475–2484. doi:https://doi.org/10.1007/s10439-010-9999-0 Schumann DA, Wippermann J, Klemm DO, Kramer F, Koth D, Kosmehl H, Wahlers T, Salehi-Gelani S (2008) Artificial vascular implants from bacterial cellulose: preliminary results of small arterial substitutes. Cellulose 16:877–885. doi:https://doi.org/10.1007/s10570-008-9264-y Shih IL (2010) Microbial exo-polysaccharides for biomedical applications. Mini-Rev Med Chem 10:1345–1355. doi:https://doi.org/10.1016/S0958-6946(01)00119-4 Sibilla P, Sereni A, Aguiari G, Banzi M, Manzati E, Mischiati C, Trombelli L, del Senno L (2006) Effects of a hydroxyapatite-based biomaterial on gene expression in osteoblast-like cells. J Dent Res 85:354–358. doi:https://doi.org/10.1177/154405910608500414 Singh M, Ray AR, Vasudevan P, Verma K, Guha SK (1979) Potential biosoluble carriers: biocompatibility and biodegradability of oxidized cellulose. Biomater Med Devices Artif Organs 7:495–512. doi:https://doi.org/10.3109/10731197909118964 Smith IO, McCabe LR, Baumann MJ (2006) MC3T3-E1 osteoblast attachment and proliferation on porous hydroxyapatite scaffolds fabricated with nanophase powder. Int J Nanomedicine 1:189–194. doi:https://doi.org/10.2147/nano.2006.1.2.189 Stevens B, Yang YZ, Mohandas A, Stucker B, Nguyen KT (2008) A review of materials, fabrication methods, and strategies used to enhance bone regeneration in engineered bone tissues. J Biomed Mater Res, Part B 85B:573–582. doi:https://doi.org/10.1002/jbm.b.30962 Stoica-Guzun A, Stroescu M, Tache F, Zaharescu T, Grosu E (2007) Effect of electron beam irradiation on bacterial cellulose membranes used as transdermal drug delivery systems. Nucl Instrum Methods Phys Res, Sect B 265:434–438. doi:https://doi.org/10.1016/j.nimb.2007.09.036 Stylios G, Wan T, Giannoudis P (2007) Present status and future potential of enhancing bone healing using nanotechnology. Injury 38(Suppl 1):S63–S74. doi:https://doi.org/10.1016/j.injury.2007.02.011 Svensson A, Nicklasson E, Harrah T, Panilaitis B, Kaplan DL, Brittberg M, Gatenholm P (2005) Bacterial cellulose as a potential scaffold for tissue engineering of cartilage. Biomaterials 26:419–431. doi:https://doi.org/10.1016/j.biomaterials.2004.02.049 Uraki Y, Nemoto J, Otsuka H, Tamai Y, Sugiyama J, Kishimoto T, Ubukata M, Yabu H, Tanaka M, Shimomura M (2007) Honeycomb-like architecture produced by living bacteria, Gluconacetobacter xylinus. Carbohydr Polym 69:1–6. doi:https://doi.org/10.1016/j.carbpol.2006.08.021 Wan YZ, Huang Y, Yuan CD, Raman S, Zhu Y, Jiang HJ, He F, Gao C (2007) Biomimetic synthesis of hydroxyapatite/bacterial cellulose nanocomposites for biomedical applications. Mater Sci Eng C 27:855–864. doi:https://doi.org/10.1016/j.msec.2006.10.002 Wang G, Chen XF, Shi XD, Yu LJ, Liu BF, Yang G (2008) Bio-fabrication of patterned cellulose nano-fibers. Adv Mater Res: Multi-functional Mater Struct 47–50:1359–1362. doi:https://doi.org/10.4028/www.scientific.net/AMR.47-50.1359 Watanabe K, Tabuchi M, Morinaga Y, Yoshinaga F (1998) Structural features and properties of bacterial cellulose produced in agitated culture. Cellulose 5:187–200. doi:https://doi.org/10.1023/A:1009272904582 White DG, Brown RM Jr (1989) Prospects for the commercialization of the biosynthesis of microbial cellulose. In: Schuerch C (ed) Cellulose and wood—chemistry and technology. Wiley, New York, pp 573–590 Wouk AF, Diniz JM, Cirio SM, Santos H, Baltazar EL, Acco A (1998) Membrana biologica (Biofill)—estudo comparativo com outros agentes promotores da cicatrizacao da pele em suinos: aspectos clinicos, histopatologicos e morfometricos. Arch Vet Sci 3:31–37 Wurdinger J, Marsch S, Udhardt U, Schumann HD (2000) BASYC (bacterial synthesized cellulose)—the vitalization of a microvessel-prosthesis in the rat. Microsurgery 20:268. doi:https://doi.org/10.1002/1098-2752(2000)20:6<267::AID-MICR1>3.0.CO;2-J, Abstracts from the Eur Fed Soc Microsurgery